
MASTER OF COMPUTER APPLICATION

MCA-11

DATABASE
MANAGEMENT SYSTEM

Directorate of Distance Education
Guru Jambheshwar University of

Science & Technology
Hisar - 125001

1

CONTENTS

1. Overview of File System & Database Systems 2-20

2. Database Approach- Characteristics of Database

Approach

21-36

3. Responsibility of Database Administrator &

Classification of DBMS

37-56

4. Database System Architecture & Data Models 57-74

5. Schemas and Data Independence 75-88

6. Entity-Relation Model and relationships 89-107

7. Relational Model and Query Language 108-135

8. Relational Database Design 136-153

9. Normal Forms 154-176

10. Concurrency Control Techniques 177-191

11. Locking and Recovery Techniques in

Centralized DBMS

192-211

12. DDBMS Design 212-223

2

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: MCA-11 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 1 VETTER:

OVERVIEW OF FILE SYSTEM & DATABASE SYSTEMS

STRUCTURE

1.0 Learning Objective

1.1 Introduction

1.2 Definition

1.3 Basic concepts

1.3.1 Data and Information

1.3.2 Record and Files

1.4 Traditional File Based Systems

1.4.1 Drawbacks of File Based Systems

1.5 DBMS Functions

1.6 Check Your Progress

1.7 Summary

1.8 Keywords

1.8 Self-Assessment Test

1.9 Answers to check your progress

1.10 References / Suggested Readings

3

1.0 LEARNING OBJECTIVE

 The objective of this chapter is to make the reader understand the concepts of data,

information and knowledge. Detailed discussion about the traditional aspect of

data and traditional file based system. To study the file oriented system and find

out the drawbacks of it.

1.1 INTRODUCTION

“Today, more than at any previous time, the success of an organization depends on its

ability to acquire accurate and timely data about its operations, to manage this data

effectively, and to use it to analyze and guide its activities. Phrases such as the information

superhighway have become ubiquitous, and information processing is a rapidly growing

multibillion dollar industry. The amount of information available to us is literally

exploding, and the value of data as an organizational asset is widely recognized. Yet

without the ability to manage this vast amount of data, and to quickly find the information

that is relevant to a given question, as the amount of information increases, it tends to

become a distraction and a liability, rather than an asset. This paradox drives the need for

increasingly powerful and flexible data management systems. To get the most out of their

large and complex datasets, users must have tools that simplify the tasks of managing the

data and extracting useful information in a timely fashion. Otherwise, data can become a

liability, with the cost of acquiring it and managing it far exceeding the value that is derived

from it. “

A historical perspective

 “In the late 1960s, IBM developed the Information Management System (IMS)

DBMS, used even today in many major installations. IMS formed the basis for an

4

alternative data representation framework called the hierarchical data model. The SABRE

system for making airline reservations was jointly developed by American Airlines and

IBM around the same time, and it allowed several people to access the same data through

a computer network. Interestingly, today the same SABRE system is used to power popular

Web-based travel services such as Travelocity!

 In 1970, Edgar Codd, at IBM's San Jose Research Laboratory, proposed a new data

representation framework called the relational data model. This proved to be a watershed

in the development of database systems: it sparked rapid development of several DBMSs

based on the relational model, along with a rich body of theoretical results that placed the

field on a firm foundation. Codd won the 1981 Turing Award for his seminal work.

Database systems matured as an academic discipline, and the popularity of relational

DBMSs changed the commercial landscape. Their benefits were widely recognized, and

the use of DBMSs for managing corporate data became standard practice.

 In the 1980s, the relational model consolidated its position as the dominant DBMS

paradigm, and database systems continued to gain widespread use. The SQL query

language for relational databases, developed as part of IBM's System R project, is now the

standard query language. SQL was standardized in the late 1980s, and the current standard,

SQL-92, was adopted by the American National Standards Institute (ANSI) and

International Standards Organization (ISO). Arguably, the most widely used form of

concurrent programming is the concurrent execution of database programs (called

transactions). Users write programs as if they are to be run by themselves, and the

responsibility for running them concurrently is given to the DBMS. James Gray won the

1999 Turing award for his contributions to the field of transaction management in a DBMS.

In the late 1980s and the 1990s, advances have been made in many areas of database

systems. Considerable research has been carried out into more powerful query languages

5

and richer data models, and there has been a big emphasis on supporting complex analysis

of data from all parts of an enterprise. Several vendors (e.g., IBM's DB2, Oracle 8, and

Informix UDS) have extended their systems with the ability to store new data types such

as images and text, and with the ability to ask more complex queries. Specialized systems

have been developed by numerous vendors for creating data warehouses, consolidating

data from several databases, and for carrying out specialized analysis.

 An interesting phenomenon is the emergence of several enterprise resource

planning (ERP) and management resource planning (MRP) packages, which add a

substantial layer of application-oriented features on top of a DBMS. Widely used packages

include systems from Baan, Oracle, PeopleSoft, SAP, and Siebel. These packages identify

a set of common tasks (e.g., inventory management, human resources planning, financial

analysis) encountered by a large number of organizations and provide a general application

layer to carry out these tasks. The data is stored in a relational DBMS, and the application

layer can be customized to different companies, leading to lower overall costs for the

companies, compared to the cost of building the application layer from scratch.

 Most significantly, perhaps, DBMSs have entered the Internet Age. While the first

generation of Web sites stored their data exclusively in operating systems files, the use of

a DBMS to store data that is accessed through a Web browser is becoming widespread.

Queries are generated through Web-accessible forms and answers are formatted using a

markup language such as HTML, in order to be easily displayed in a browser. All the

database vendors are adding features to their DBMS aimed at making it more suitable for

deployment over the Internet.

Database management continues to gain importance as more and more data is brought on-

line, and made ever more accessible through computer networking. Today the field is being

driven by exciting visions such as multimedia databases, interactive video, digital libraries,

6

and a host of scientific projects such as the human genome mapping effort and NASA's

Earth Observation System project, and the desire of companies to consolidate their

decision-making processes and mine their data repositories for useful information about

their businesses. Commercially, database management systems represent one of the largest

and most vigorous market segments. Thus the study of database systems could prove to be

richly rewarding in more ways than one!”

1.2 DEFINITION

“Data is the fuel that drives the financial services industry. Without it, organizations would

cease to function. It is data that ensures that every system and every process within the

organization functions at an optimal level. Data is mission-critical because it:

 Influences every decision

 Powers risk management

 Offers insight into markets, products, services, customers and counterparties

 Pinpoints a company’s positions, exposures, and available liquidity

 Is demanded by regulators and auditors

 As the markets change, the volume of data to be managed is increasing, adding

greater complexity to the process. Data management has for too long been regarded as an

infrastructure problem for IT to solve. But this is changing. The reality is that data

management is as central to successful, sustainable operations as risk management. Data

management is not a technology or a tool – it is a business enabler. At Asset Control, we

view data management as a critical process which ensures that essential business decisions

are based on accurate, consistent and verifiable information.

7

Traditional File Based System- The traditional file system (TFS) is a method of storing and

arranging computer files and the information in the file (data). Basically it organizes these

files into a database for the storage, organization, manipulation, and retrieval by the

computer's operating system.”

1.3 BASIC CONCEPTS

In an organization, the data is the most basic resource. To run the organization efficiently,

the proper organization and management of data is essential. The formal definition of the

major terms used in databases and database systems is defined in this section.

1.3.1 DATA AND INFORMATION

 Data: The term data may be defined as known facts that could be recorded and

stored on Computer Media. It is also defined as raw facts from which the required

information is produced. Data represents unorganized and unprocessed facts.

o Usually data is static in nature.

o It can represent a set of discrete facts about events.

o Data is a prerequisite to information.

o An organization sometimes has to decide on the nature and volume of data

that is required for creating the necessary information.

 Information: Data and information are closely related and are often used

interchangeably. Information is nothing but refined data. In other way, we can say,

information is processed, organized or summarized data. According to Burch et. al.,

“Information is data that have been put into a meaningful and useful content and

communicated to a recipient who uses it to made decisions”. Information consists

of data, images, text, documents and voice, but always in a meaningful content. So

we can say, that information is something more than mere data. Data are processed

8

to create information. The recipient receives the information and then makes a

decision and takes an action, which may triggers other actions

o Information can be considered as an aggregation of data (processed data)

which makes decision making easier.

o Information has usually got some meaning and purpose.

In these days, there is no lack of data, but there is lack of quality information. The

quality information means information that is accurate, timely and relevant, which are the

three major key attributes of information.

1. Accuracy: It means that the information is free from errors, and it clearly and

accurately reflects the meaning of data on which it is based. It also means it is free

from bias and conveys an accurate picture to the recipient.

2. Timeliness: It means that the recipients receive the information when they need

it and within the required time frame.

3. Relevancy: It means the usefulness of the piece of information for the

corresponding persons. It is a very subjective matter. Some information that is

relevant for one person might not be relevant for another and vice versa e.g., the

price of printer is irrelevant for a person who wants to purchase computer. So,

organization that have good information system, which produce information that is

accurate, timely and relevant will survive and those that do not realize the

importance of information will soon be out of business.

9

Figure1.1 Data, Information, Knowledge and Wisdom

1.3.2 FIELDS AND RECORDS:

Fields: It is the smallest unit of the data that has meaning to its users and is also called data

item or data element. Name, Address and Telephone number are examples of fields. These

are represented in the database by a value. A database field is a set of data values, of the

same data type, in a table. It is also referred to as a column or an attribute.

Most databases also allow fields to hold complex data like pictures, entire files, and

even movie clips. A field that allows the same data type does not mean it only has simple

text values. Some databases allow the data to be stored as a file on the Operating System,

while the field data only contains a pointer or link to the actual file. This is done to keep

the database size manageable, given that smaller database sizes means less time for

backups, as well as for searching data within the database.

A simple example is a table 1.1 that saves employee’s job record. The fields in this

table could be the following: Employee ID, Last Name, First Name, Position, Department,

and Hire Date.

Employee
ID

Last
Name

First
Name

Position Department Hire Date

00108 Doe John Assistant
Manager

Human
Resources

November 16,
2000

10

00109 Parker Anne Supervisor Financial
Services

May 1, 2003

Table 1.1: Example of a table with fields

Records: Records provide a practical way to store and retrieve data from the database.

Each record can have different kinds of data, and thus a single row could have several types

of information. A customer record could contain an ID number, name, birth date, cell phone

number, and email.

There is one exception to the above rule. A good database design should include a primary

key for the table. This means that each record in the data set has one field that is unique

among all records and that it can't be repeated. Tools like Microsoft Access let you easily

set a field to be the primary key; this is usually a field that is auto-numbered (starting at 1)

and keeps adding as you add rows/records to the table.

The term ''record'' can also be pronounced reCORD, meaning to save information/data. This

is also a helpful means to identify a database record: It's a record, or the data, that has been

reCORDed. A group of records can be called a file, data set, or table. Microsoft Access and

other database tools refer to these objects as tables: This lesson will refer to the collective

group of records as a table. A record is a group of data saved in a table. It is a set of fields,

like an employee’s job record as shown below in table 1.2.

Employee
ID

Last
Name

First
Name

Position Department Hire Date

00108 Doe John Assistant
Manager

Human
Resources

November 16,
2000

00109 Parker Anne Supervisor Financial
Services

May 1, 2003

Table 1.2: Example of a Record

A record in a database is an object that can have one or more values. Groups of records are

then saved in a table; the table determines the data that each record may have. Various

tables hold various records in a database. A new record produces a new row in the table

11

that’s why records are oftentimes labeled as rows. Separate fields are referred to as columns

because they are identical for every record in the table. Record and row can be utilised

mutually, but nearly all database management systems utilise row for error messages and

queries. Records provide a practical way to save and pull out data from the database. Each

record can have diverse types of data, and thus a single row could have several kinds of

information. Records can be easily created, altered and erased without affecting other data

in the database. An ideal database design should have a primary key for the table. A

primary key is a unique field in each record in a database. In an employee’s job record

sample above, the Employee ID is the primary key. A group of records can be called a file,

data set or table.

1.4 TRADITIONAL FILE BASED SYSTEM

A file processing system is a collection of files and programs that access/modify these files.

Typically, new files and programs are added over time (by different programmers) as new

information needs to be stored and new ways to access information are needed. Problems

with file processing systems:

 • Data redundancy and inconsistency

 • Difficulty of accessing data

 • Problems with concurrent access

Example: assume I’m paying for groceries with my Debit/Credit card at the same time my

pay check is being deposited (and my bank uses a file processing system):

Withdrawal program

1. Read balance from checking account file

as Rs. 50000.

3. subtract Rs. 10000 (for groceries)

Deposit program

1. Read balance from checking account file

as Rs. 50000.

2. add Rs. 40000 (my salary)

12

4. update checking account file(new

balance: Rs. 40000)

3. update checking account file (new

balance: Rs. 90000)

It is difficult to prevent such problems unless programs (example: withdrawal and deposit)

are coordinated or integrated.

• Atomicity problems - ensuring that a system failure during a database update does not

leave the

database in an inconsistent state

• Security problems

 – not all users should have access to all data

 – example: bank payroll personnel shouldn’t know my checking account balance

 – difficult to enforce security in an ad hoc system

• Integrity problems

 – data may need to satisfy certain conditions, called consistency constraints

 – difficult to enforce/add/change consistency constraints in a file processing system

DBMSs were developed to remedy these problems.

Traditional file processing systems include manual systems and also computer based file systems

that were linked to particular application programs. This is the type of file processing that you used

with your 3GL programming. They share a number of characteristics. Let’s see how a traditional

file system looks in figure 1.2.

13

 Figure 1.2: Traditional File System

1.4.1 DRAWBACKS OF TRADITIONAL FILE BASED SYSTEM

There are a number of disadvantages associated with traditional file processing systems.

1. Data duplication

When files are duplicated and held in a number of locations situations can arise that

will cause data to be inconsistent.

 Corrections or modifications made in one location may not be updated in

another. For example, customer address files held by the Accounts Department

may be updated while those held by Sales are not updated. For the customer this

may mean that the account arrives but the goods do not.

 Modifications made to data files may also lead to less obvious discrepancies. For

example a product name may be spelt differently in two locations eg. Bisleri,

Bislery. A report generated calculating sales to customers by product may then

include the same customers twice. This may not be obvious if the report is a

summary style report.

2. Poor data control

14

File systems have no centralised control of the data descriptions. Tables and field names

may be used in different locations to mean different things. For example, the Sales

department's files may list a customer as having a single Name field that is made up of

customers Initial and Last name eg Rahul Gupta. The Accounts department may keep the

customer’s name in three separate fields; First name, Initial, Last Name. This may make

it difficult to compare the data in the two files or at least require additional time in

programming the comparison.

3. Inadequate data manipulation capabilities

Data in traditional file systems is not easily related, particularly if the files have been

developed for separate purposes. If the organisation requires information to be generated

that accesses data from several unrelated files the task may prove difficult or require re-

entry of data. For example, in a library the catalogue of books may be held in one

file. Books on order for the library may be held in another file. When books are received

the catalogue will need to be manually updated if the two files are not related.

4. Program data dependence

File data is stored within each of the applications that use that data eg A sales transaction

program may have several files relevant to it, Customer, Stock_in_hand, Sale_Info. These

files are integrated into the program.

5. Limited data sharing

The dependence of the data on the program means that the files are not necessarily suitable

for a new program that is being developed. The new program may need its data in another

form or require additional data that is not held.

6. Lengthy development times

Each new application requires development of the program along with the development

of the relevant files for that application. Although the data may be held elsewhere in the

15

organization the data will need to be imported or re-entered into the new files. This takes

time. As organizations grow and change they need to change their internal applications

quickly to meet new demands. Lengthy development times are a disadvantage.

7. Program maintenance

File maintenance can be time consuming in traditional file processing systems. Changes

to files mean changes to application programs

1.5 DBMS FUNCTIONS

Here are several functions that a DBMS performs to ensure data integrity and consistency

of data in the database. The ten functions in the DBMS are: data dictionary management,

data storage management, data transformation and presentation, security management,

multiuser access control, backup and recovery management, data integrity management,

database access languages and application programming interfaces, database

communication interfaces, and transaction management.

1. Data Dictionary Management

Data Dictionary is where the DBMS stores definitions of the data elements and their

relationships (metadata). The DBMS uses this function to look up the required data

component structures and relationships. When programs access data in a database they are

basically going through the DBMS. This function removes structural and data dependency

and provides the user with data abstraction. In turn, this makes things a lot easier on the

end user. The Data Dictionary is often hidden from the user and is used by Database

Administrators and Programmers.

 2. Data Storage Management

This particular function is used for the storage of data and any related data entry forms or

screen definitions, report definitions, data validation rules, procedural code, and structures

that can handle video and picture formats. Users do not need to know how data is stored or

16

manipulated. Also involved with this structure is a term called performance tuning that

relates to a database’s efficiency in relation to storage and access speed.

3. Data Transformation and Presentation

 [</span]link title> This function exists to transform any data entered into required data

structures. By using the data transformation and presentation function the DBMS can

determine the difference between logical and physical data formats.

4. Security Management

This is one of the most important functions in the DBMS. Security management sets rules

that determine specific users that are allowed to access the database. Users are given a

username and password or sometimes through biometric authentication (such as a

fingerprint or retina scan) but these types of authentication tend to be more costly. This

function also sets restraints on what specific data any user can see or manage.

5. Multiuser Access Control

 Data integrity and data consistency are the basis of this function. Multiuser access control

is a very useful tool in a DBMS, it enables multiple users to access the database

simultaneously without affecting the integrity of the database.

6. Backup and Recovery Management

 Backup and recovery is brought to mind whenever there is potential outside threats to a

database. For example if there is a power outage, recovery management is how long it takes

to recover the database after the outage. Backup management refers to the data safety and

integrity; for example backing up all your mp3 files on a disk.

7. Data Integrity Management

The DBMS enforces these rules to reduce things such as data redundancy, which is when

data is stored in more than one place unnecessarily, and maximizing data consistency,

making sure database is returning correct/same answer each time for same question asked.

http://www.example.com/

17

8. Database Access Languages and Application Programming Interfaces

A query language is a nonprocedural language. An example of this is SQL (structured query

language). SQL is the most common query language supported by the majority of DBMS

vendors. The use of this language makes it easy for user to specify what they want done

without the headache of explaining how to specifically do it.

9. Database Communication Interfaces

This refers to how a DBMS can accept different end user requests through different network

environments. An example of this can be easily related to the internet. A DBMS can

provide access to the database using the Internet through Web Browsers (Mozilla Firefox,

Internet Explorer, and Netscape).

1.6 CHECK YOUR PROGRESS

1. To create a file ______________

a. Allocate the space in the file system

b. Make an entry for new file in directory

c. Allocate the space in the file system and make an entry for new file in

directory

d. None of above

2. File system can be represented by _____________.

3. Which file is a sequence of bytes organized into blocks understandable by the

system’s linker?

4. Mapping of file is managed by __________.

5. _______ is a unique tag, usually a number identifies the file in the file system.

18

1.7 SUMMARY

An organization must have accurate and reliable data (information) for effective decision

making. Data (information) is the backbone and most critical resource of an organization

that enables managers and organizations to gain a competitive edge. In this age of

information explosion, where people are bombarded with data, getting the right

information, in the right amount, at the right time is not an easy task. So, only those

organizations will survive that successfully manage information.

A database system simplifies the tasks of managing the data and extracting useful

information in a timely fashion. A database system is an integrated collection of related

files, along with the details of the interpretation of the data. A Data Base Management

System is a software system or program that allows access to data contained in a database.

The objective of the DBMS is to provide a convenient and effective method of defining,

storing, and retrieving the information stored in the database. The database and database

management systems have become essential for managing business, governments, schools,

universities, banks etc. File system is collection of data. In this system, user has to write

procedures for managing database. It provides details of data representation and storage of

data. In this –

 Data is stored in files.

 Each file has specific format.

 Programs that use these files depend on knowledge about that format.

 In earlier days, database applications were built on top of file systems.

This approach is mostly obsolete but –

 Understanding problems inherent in file based systems may prevent us from

repeating these problems in our database system.

19

 Understanding how file system works is extremely useful when converting a file-

based system to a database system.

Basically, it is a collection of application programs that performs services for end users

such as production of reports. Each file defines and manages its own data. It doesn’t have

a crash mechanism i.e., if system crashes while entering some data, then content of file will

be lost. This is disadvantage of traditional file based system. Also, it is very difficult to

protect a file under the file system. This system can’t efficiently store and retrieve data.

1.8 KEYWORDS

 DATA- Data are measured, collected and reported, and analysed, whereupon it can

be visualized using graphs, images or other analysis tools. Data as a general concept

refers to the fact that some existing information or knowledge is represented or

coded in some form suitable for better usage or processing.

 RECORD- A record is a database entry that may contain one or more values.

Groups of records are stored in a table, which defines what types of data each record

may contain. Databases may contain multiple tables which may each contain

multiple records.

 FILE- A file is a collection of records. For example, a telephone book is analogous

to a file.

 FIELD- In computer science, data that has several parts, known as a record, can be

divided into fields. Relational databases arrange data as sets of database records, so

called rows. Each record consists of several fields; the fields of all records form the

columns. Examples of fields: name, gender, hair colour.

 TFS- Traditional File System

20

1.9 SELF-ASSESSMENT TEST

1. What are data and information, and how are they related in a database?

2. Who is E.F. Codd, and why is he significant in the development of modern database

systems?

3. What is Enterprise Resource Planning (ERP), and what kind of a database is used

in an ERP application?

4. Discuss a traditional file system in detail.

5. How a traditional file system differ from Data base system, what are the drawbacks

of it?

1.10 ANSWERS TO CHECK YOUR PROGRESS

1. C

2. File extension

3. Object file

4. File metadata

5. File indentifier

1.11 REFERENCES / SUGGESTED READINGS

 C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N.

Delhi.

 Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB

Publication 3rd edition.

 Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson

Education.

 Thomas Connolly Carolyn Begg, “Database System”, 3/2, Pearson Education.

 https://www.geeksforgeeks.org/traditional-file-system/

 https://www.dlsweb.rmit.edu.au/Toolbox/Database/Certificate4_DB_Toolbox/con

tent/dbsystems/file_process.htm

 https://whatisdbms.com/what-is-traditional-file-processing-system-and-its-

characteristics/

https://www.geeksforgeeks.org/traditional-file-system/
https://www.dlsweb.rmit.edu.au/Toolbox/Database/Certificate4_DB_Toolbox/content/dbsystems/file_process.htm
https://www.dlsweb.rmit.edu.au/Toolbox/Database/Certificate4_DB_Toolbox/content/dbsystems/file_process.htm
https://whatisdbms.com/what-is-traditional-file-processing-system-and-its-characteristics/
https://whatisdbms.com/what-is-traditional-file-processing-system-and-its-characteristics/

21

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: MCA-11 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 2 VETTER:

DATABASE APPROACH- CHARACTERISTICS OF

DATABASE APPROACH

2.0 Learning Objective

2.1 Introduction

2.2 Definition

2.3 What is DBMS?

2.4 Database Approach

2.5 Characteristics of Database approach

2.6 Advantages of DBMS

2.7 Disadvantages of DBMS

2.8 Check Your Progress

2.9 Summary

2.10 Keywords

2.11 Self-Assessment Test

2.12 Answers to check your progress

2.13 References / Suggested Readings

22

2.0 LEARNING OBJECTIVE

 The objective of this chapter is to make the reader understand the procedural

language for SQL. The architecture of PL/SQL in detailed will be studies and

to get familiar with the loops that can be used in the procedural language for

SQL.

2.1 INTRODUCTION

DBMS stands for Database Management System. We can break it like this DBMS =

Database + Management System. Database is a collection of data and Management System

is a set of programs to store and retrieve those data. Based on this we can define DBMS

like this: DBMS is a collection of inter-related data and set of programs to store & access

those data in an easy and effective manner. Database systems are basically developed for

large amount of data. When dealing with huge amount of data, there are two things that

require optimization: Storage of data and retrieval of data.

According to the principles of database systems, the data is stored in such a way

that it acquires lot less space as the redundant data (duplicate data) has been removed before

storage. Let’s take a layman example to understand this:

In a banking system, suppose a customer is having two accounts, one is saving

account and another is salary account. Let’s say bank stores saving account data at one

place (these places are called tables we will learn them later) and salary account data at

another place, in that case if the customer information such as customer name, address etc.

are stored at both places then this is just a wastage of storage (redundancy/ duplication of

data), to organize the data in a better way the information should be stored at one place and

both the accounts should be linked to that information somehow. The same thing we

achieve in DBMS.

23

Fast Retrieval of data: Along with storing the data in an optimized and systematic

manner, it is also important that we retrieve the data quickly when needed. Database

systems ensure that the data is retrieved as quickly as possible.

2.2 DEFINITION

The DBMS software together with the Database is called a database system. In other words,

it can be defined as an organization of components that define and regulate the collection,

storage, management and use of data in a database. Furthermore, it is a system whose

overall purpose is to record and maintain information. A database system consists of fou

major components as shown in Figure 2.1.

Figure 2.1: Database system

2.3 WHAT IS DBMS?

We have studied the concepts of data item (also called field), record and file in the previous

chapter, we have seen information regarding all the employees being stored in a file called

"employee-file". The file contained many records, one per employee. Each employee

24

record consisted of data items such as employee number, name and basic pay. Similar

examples of files could be student-file, purchase-order-file, and invoice- file and so on. In

typical business environments, it is always essential to be able to produce the right

information at the right time with minimum efforts. Assume that a manufacturer of goods

uses 10 such different files (one for suppliers, one for customers, one for accounts, etc.). It

might not be very easy to answer a query such as: How many of our customers have credit

balance with us for over a month now and whose average purchases from December last

year to February this year have been above average? You can imagine the complexity

involved in providing this information. It is not that such a report cannot be generated at

all. It certainly can be produced, however, it will require a lot of effort. We shall see the

reasons behind this and also study what better systems exist. More specifically, we shall

study how a database is a better solution than a set of files. Also, a Database Management

System (DBMS) scores over File Management System (FMS) on many counts.

The DBMS has evolved over the years from being a simple means of arranging data

to a much more sophisticated organisation and retrieval of data as and when required, in

real-time. We shall study the different types of databases and understand the differences

between them. Relational Database Management Systems (RDBMS), about which we shall

study too, have become the most popular of them all for many reasons. Our aim is also to

see how we can access data from a RDBMS using the Structured Query Language (SQL).

The four major components are:

1. Data: The whole data in the system is stored in a single database. This data in the

database are both shared and integrated. Sharing of data means individual pieces of

data in the database is shared among different users and every user can access the

same piece of data but may be for different purposes. Integration of data means the

25

database can be function of several distinct files with redundancy controlled among

the files.

2. Hardware: The hardware consists of the secondary storage devices like disks,

drums and so on, where the database resides together with other devices. There is

two types of hardware. The first one, i.e., processor and main memory that supports

in running the DBMS. The second one is the secondary storage devices, i.e., hard

disk, magnetic disk etc., that are used to hold the stored data.

3. Software: A layer or interface of software exists between the physical database and

the users. This layer is called the DBMS. All requests from the users to access the

database are handled by the DBMS. Thus, the DBMS shields the database users

from hardware details. Furthermore, the DBMS provides the other facilities like

accessing and updating the data in the files and adding and deleting files itself.

4. Users: The users are the people interacting with the database system in any way.

There are four types of users interacting with the database systems. These are

Application Programmers, online users, end users or naive users and finally the

Database Administrator (DBA).

Although using files was a satisfactory approach for small organisations and businesses, it

was not quite easy to work with for larger establishments. Hence, a need for storing

information centrally and using it as and when needed was felt. This would take care of the

problems with files. The most important change brought about by DBMS is that the

programs no longer interact with the data files directly. Instead, they communicate with the

DBMS, which acts as a middle agency. It controls the flow of information from and to the

database, as shown in Fig. 2.2.

If we compare this figure with the earlier one, the initial reaction might be that an extra

layer of complexity has been added. However, this extra layer is not a cause for worry as it

26

is completely transparent to the end user and, in fact, it helps. As the figure shows, the files

are integrated. This means that there is no duplication of data. Instead, all the files are stored

together. They are managed by DBMS. In fact, the user or programmer does not even know

about the files used by DBMS. DBMS internally uses data structures such as chains,

pointers and indexes.

Figure 2.2: Database approach

However, the user or programmer need not worry about the internal details of how the

data is stored such as whether it is on one disk or more, on which sectors, in a continuous

pattern or in chunks, in what data structures (e.g. chains/indexes) and so on. If the user

wants to find all the invoices in which the value is > $500, DBMS can produce the result.

It may use the indexes on invoice value to achieve this, or it may go through the invoices

record sequentially. The user need not worry. Only the category of people called Data

Base Administrator (DBA) need to know the details of data storage. This is because they

are concerned with the performance and security aspects of DBMS. This is how DBMS

hides all the complexities involved in maintaining files and provides a common and

simple interface. There is another interesting consequence illustrated in Fig. 2.2. In it,

27

User 2 is interacting directly with the database, without needing to use an application

program. This is possible since DBMS provides a set of commands for interacting with

and manipulating the database. At the same time, User 1 wants to access/manipulate the

database, which is not directly possible by using its set of DBMS commands. Therefore,

the user's interaction is through an application program. The third case is a batch program

that executes without a user, sitting and interacting with the program database

continuously through a terminal. The batch program executes on its own, once scheduled

to run at a specific time. Thus, online (simple and complex) as well as batch data

processing is easily handled by DBMS.

2.4 DATABASE APPROACH

In order to remove all limitations of the File Based Approach, a new approach was

required that must be more effective known as Database approach. The Database is a

shared collection of logically related data, designed to meet the information needs of an

organization. A database is a computer based record keeping system whose over all

purpose is to record and maintains information. The database is a single, large repository

of data, which can be used simultaneously by many departments and users. Instead of

disconnected files with redundant data, all data items are integrated with a minimum

amount of duplication.

The database is no longer owned by one department but is a shared corporate

resource. The database holds not only the organization’s operational data but also a

description of this data. For this reason, a database is also defined as a self-describing

collection of integrated records. The description of the data is known as the Data

Dictionary or Meta Data (the ‘data about data’). It is the self-describing nature of a

database that provides program-data independence.

28

A database implies separation of physical storage from use of the data by an

application program to achieve program/data independence. Using a database system, the

user or programmer or application specialist need not know the details of how the data are

stored and such details are “transparent to the user”. Changes (or updating) can be made

to data without affecting other components of the system. These changes include, for

example, change of data format or file structure or relocation from one device to another.

2.5 CHARACTERSTICS OF DATABASE APPROACH

There are number of characteristics that distinguish the database approach from the much

older approach of programming with files.

 In traditional file processing, each user defines and implements the files needed

for a specific software application as part of programming the application.

For example, one user, the grade reporting office, may keep files on students and

their grades. Programs to print a student’s transcript and to enter new grades are

implemented as part of the application. A second user, the accounting office, may keep

track of students’ fees and their payments. Although both users are interested in data about

students, each user maintains separate files— and programs to manipulate these files—

because each requires some data not available from the other user’s files. This redundancy

in defining and storing data results in wasted storage space and in redundant efforts to

maintain common up-to-date data.

 In the database approach, a single repository maintains data that is defined once

and then accessed by various users. In file systems, each application is free to

name data elements independently. In contrast, in a database, the names or

29

labels of data are defined once, and used repeatedly by queries, transactions,

and applications.

The main characteristics of the database approach (feature of database approach) and how

it differs from the traditional file system i.e file-processing approach:

 Self-describing nature of a database system

 Insulation between programs and data, and data abstraction

 Support of multiple views of the data

 Sharing of data and multiuser transaction processing

Self-describing nature of a database system:

1. A fundamental characteristics of database approach is that the database system contains

not only the database itself but also a complete definition or description of the database

structure and constraints. This definition is stored in the DBMS catalog, which contains

information such as the structure of each file, the type and storage format of each data

item, and various constraints on the data. The information stored in the catalog is called

meta-data, and it describes the structure of the primary database.

2. The catalog is used by the DBMS software and also by database users who need

information about the database structure. A general-purpose DBMS software package

is not written for a specific database application. Therefore, it must refer to the catalog

to know the structure of the files in a specific database, such as the type and format of

data it will access. The DBMS software must work equally well with any number of

database applications—for example, a university database, a banking database, or a

company database—as long as the database definition is stored in the catalog.

30

3. In traditional file processing, data definition is typically part of the application programs

themselves. Hence, these programs are constrained to work with only one specific

database, whose structure is declared in the application programs.

Insulation between programs and data, and data abstraction

1. In traditional file processing, the structure of data files is embedded in the application

programs, so any changes to the structure of a file may require changing all programs

that access that file. By contrast, DBMS access programs do not require such changes

in most cases. The structure of data files is stored in the DBMS catalog separately from

the access programs. We call this property program-data independence.

2. For example, a file access program may be written in such a way that it can access only

STUDENT records of the structure. If we want to add another piece of data to each

STUDENT record, say the Birth_date , such a program will no longer work and must

be changed. By contrast, in a DBMS environment, we only need to change the

description of STUDENT records in the catalog to reflect the inclusion of the new data

item Birth_date; no programs are changed.

3. The next time a DBMS program refers to the catalog, the new structure of STUDENT

records will be accessed and used. In some types of database systems, such as object-

oriented and object-relationa systems, users can define operations on data as part of the

database definitions. An operation (also called a function or method) is specified in two

parts. The interface (or signature) of an operation includes the operation name and the

data types of its arguments (or parameters). The implementation (or method) of

operation is specified separately and can be changed without affecting the interface.

User application programs can operate on the data by invoking these operations through

their names and arguments, regardless of how the operations are implemented. This

may be termed program-operation independence.

31

4. The characteristic that allows program-data independence and program-operation

independence is called data abstraction. A DBMS provides users with a conceptual

representation of data that does not include many of the details of how the data is stored

or how the operations are implemented. Informally, a data model is a type of data

abstraction that is used to provide this conceptual representation. The data model uses

logical concepts, such as objects, their properties, and their interrelationships, that may

be easier for most users to understand than computer storage concepts. Hence, the data

model hides storage and implementation details that are not of interest to most database

users.

2.6 ADVANTAGES OF DBMS

There are several advantages of Database management system over file system. Few of

them are as follows:

 No redundant data: Redundancy removed by data normalization. No data

duplication saves storage and improves access time.

 Data Consistency and Integrity: As we discussed earlier the root cause of data

inconsistency is data redundancy, since data normalization takes care of the data

redundancy, data inconsistency also been taken care of as part of it

 Data Security: It is easier to apply access constraints in database systems so that

only authorized user is able to access the data. Each user has a different set of access

thus data is secured from the issues such as identity theft, data leaks and misuse of

data.

 Privacy: Limited access means privacy of data.

 Easy access to data – Database systems manages data in such a way so that the data

is easily accessible with fast response times.

https://beginnersbook.com/2015/05/normalization-in-dbms/

32

 Easy recovery: Since database systems keeps the backup of data, it is easier to do a

full recovery of data in case of a failure.

 Flexible: Database systems are more flexible than file processing systems.

2.7 DISADVANTAGES OF DBMS

Here are some major disadvantages of DBMS

 DBMS implementation cost is high compared to the file system

 Complexity: Database systems are complex to understand

 Performance: Database systems are generic, making them suitable for various

applications. However this feature affect their performance for some applications

2.8 CHECK YOUR PROGRESS

1. Which of the following is not a type of database management system?

(a) Hierarchical (b) Network

(c) Relational (d) Sequential.

2. A schema describes

(a) Data elements (b) Records and files

(c) Record relationship (d) All of the above.

3. Which data management language component enabled the DBA to define schema

components?

(a) DML (b) Subschema DLL

(c) Schema DLL (d) All of these.

4. Which statement is false regarding data independence?

(a) Hierarchical data model suffers from data independence.

(b) Network model suffers from data independence.

33

(c) Relational model suffers from logical data independence.

(d) Relational model suffers from physical data independence.

5. Databases may be more expensive to maintain than files because of

(a) backup and recovery needs

(b) the complexity of the database environment

(c) the need for specialized personnel

(d) all of the above.

6. Typically, a database consists ____________ but can support mul ____________.

(a) table, queries (b) information, data

(c) physical view, logical view (d) information view, data view.

2.9 SUMMARY

A DBMS is a software used to store and manage data. The DBMS was introduced during

1960's to store any data. It also offers manipulation of the data like insertion, deletion, and

updating of the data. DBMS system also performs the functions like defining, creating,

revising and controlling the database. It is specially designed to create and maintain data

and enable the individual business application to extract the desired data. The main purpose

of database systems is to manage the data. Consider a university that keeps the data of

students, teachers, courses, books etc. To manage this data we need to store this data

somewhere where we can add new data, delete unused data, update outdated data, retrieve

data, and to perform these operations on data we need a Database management system that

allows us to store the data in such a way so that all these operations can be performed on

the data efficiently.

Simply put, a database system is a computerised record-keeping system with a lot of

facilities. It is convenient to keep records and information in the form of computer

34

databases rather than in manual systems. Fig. 2.3 shows the three DBMS models;

Hierarchical, Network and Relational.

 The term model refers to the way data is organised in and accessible from DBMS.

These three models differ in a number of ways, as we shall study later.

Figure 2.3: DBMS Models

We will concentrate on RDBMS and, as such, use an example from RDBMS to understand

how users can access and manipulate databases. In RDBMS, data records (e.g. customer,

student, book etc.) are stored on the hard disk by the operating system (O/S) such as UNIX

and Windows 2000. The RDBMS interacts with the O/S and allows the user/programmer

to view the records in the form of tables. Obviously, there is no such thing as a table on the

hard disk.

2.10 KEYWORDS

 DATA INTERGRITY- Data integrity refers to the accuracy and consistency

(validity) of data over its lifecycle. ... Data integrity can be compromised in several

ways. Each time data is replicated or transferred, it should remain intact and

unaltered between updates.

 DATA REDUNDANCY- Data redundancy is a condition created within a database

or data storage technology in which the same piece of data is held in two separate

35

places. This can mean two different fields within a single database, or two different

spots in multiple software environments or platforms.

 ENDUSER- An end user is the person that a software program or hardware device

is designed for. The term is based on the idea that the "end goal" of a software or

hardware product is to be useful to the consumer. The end user can be contrasted

with the developers or programmers of the product.

 DATA MODELS- Data Models are fundamental entities to introduce abstraction

in a DBMS. Data models define how data is connected to each other and how they

are processed and stored inside the system. The very first data model could be flat

data-models, where all the data used are to be kept in the same plane.

2.11 SELF-ASSESSMENT TEST

1. What is data?

2. What is Information?

3. What is the difference between data and information?

4. What is Metadata?

5. Explain various types of Metadata?

6. What is the difference between active and passive data dictionary?

7. What is data base?

8. What are the main characteristics of a database?

9. What are the capabilities of a database?

2.12 ANSWERS TO CHECK YOUR PROGRESS

1. D

2. D

3. D

4. D

5. D

6. C

36

2.13 REFERENCES / SUGGESTED READINGS

 C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N.

Delhi.

 Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB

Publication 3rd edition.

 Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson

Education.

 Thomas Connolly Carolyn Begg, “Database System”, 3/2, Pearson Education.

 https://padakuu.com/article/237-characteristics-of-the-database-approach

 https://whatisdbms.com/characteristics-of-database-approach/

 https://ecomputernotes.com/fundamental/what-is-a-database/database-approach

 https://beginnersbook.com/2015/04/dbms-tutorial/

https://padakuu.com/article/237-characteristics-of-the-database-approach
https://whatisdbms.com/characteristics-of-database-approach/
https://ecomputernotes.com/fundamental/what-is-a-database/database-approach
https://beginnersbook.com/2015/04/dbms-tutorial/

37

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: MCA-11 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 3 VETTER:

RESPONSIBILITY OF DATABASE ADMINISTRATOR &

CLASSIFICATION OF DBMS

3.0 Learning Objective

3.1 Introduction

3.2 Definition

3.3 Responsibility of Database Administrator

3.4 Classification of Database systems

3.5 DBMS Languages and Interfaces

3.6 Client- Server Model and Centralized Model of DBMS

3.7 Data Dictionary

3.8 Check Your Progress

3.9 Summary

3.10 Keywords

3.11 Self-Assessment Test

3.12 Answers to check your progress

3.13 References / Suggested Readings

38

3.0 LEARNING OBJECTIVE

 The objective of this chapter is to make the reader understand the responsibility

of Database administrator and the meaning, as well as concept of centralized

database and client server model of database. To know the about the

classification of databases. To understand the interfaces and DBMS languages.

3.1 INTRODUCTION

In this chapter, we firstly focus on centralized as well as client server model of databases.

The client-server model, or client-server architecture, is a distributed application

framework dividing tasks between servers and clients, which either reside in the same

system or communicate through a computer network or the Internet. The client relies on

sending a request to another program in order to access a service made available by a server.

The server runs one or more programs that share resources with and distribute work among

clients. The client server relationship communicates in a request–response messaging

pattern and must adhere to a common communications protocol, which formally defines

the rules, language, and dialog patterns to be used. Client-server communication typically

adheres to the TCP/IP protocol suite. TCP protocol maintains a connection until the client

and server have completed the message exchange. TCP protocol determines the best way

to distribute application data into packets that networks can deliver, transfers packets to

and receives packets from the network, and manages flow control and retransmission of

dropped or garbled packets. IP is a connectionless protocol in which each packet traveling

through the Internet is an independent unit of data unrelated to any other data units.

Client requests are organized and prioritized in a scheduling system, which helps

servers cope in the instance of receiving requests from many distinct clients in a short space

of time. The client-server approach enables any general-purpose computer to expand its

39

capabilities by utilizing the shared resources of other hosts. Popular client-server

applications include email, the World Wide Web, and network printing.

3.2 DEFINITION

Client- Server Database- Client-server denotes a relationship between cooperating

programs in an application, composed of clients initiating requests for services and servers

providing that function or service.

Centralized Database- A centralized database (sometimes abbreviated CDB) is

a database that is located, stored, and maintained in a single location. This location is most

often a central computer or database system, for example a desktop or server CPU, or a

mainframe computer.

Distributed Database- A distributed database (DDB) is an integrated collection

of databases that is physically distributed across sites in a computer network. A distributed

database management system (DDBMS) is the software system that manages a distributed

database such that the distribution aspects are transparent to the users.

Data Dictionary- A data dictionary is a centralized repository of metadata. Metadata

is data about data. Some examples of what might be contained in an organization's data

dictionary include: The names of fields contained in all of the organization's databases.

3.3 RESPONSIBILITY OF DATABASE ADMINISTRATOR

A database administrator's (DBA) primary job is to ensure that data is available,

protected from loss and corruption, and easily accessible as needed. Below are some of the

chief responsibilities that make up the day-to-day work of a DBA. DSP deliver an

outsourced DBA service in the UK, providing Oracle Support and SQL Server Support;

whilst mindset and toolset may be different, whether a database resides on premise or in a

Public / Private Cloud, the role of the DBA is not that different.

https://www.dsp.co.uk/oracle-database-support/
https://www.dsp.co.uk/sql-server-support-2/

40

1. Software installation and Maintenance

A DBA often collaborates on the initial installation and configuration of a new Oracle, SQL

Server etc. database. The system administrator sets up hardware and deploys the operating

system for the database server, then the DBA installs the database software and configures

it for use. As updates and patches are required, the DBA handles this on-going maintenance.

And if a new server is needed, the DBA handles the transfer of data from the existing system

to the new platform.

2. Data Extraction, Transformation, and Loading

Known as ETL, data extraction, transformation, and loading refers to efficiently importing

large volumes of data that have been extracted from multiple systems into a data warehouse

environment.

This external data is cleaned up and transformed to fit the desired format so that it can be

imported into a central repository.

3. Specialized Data Handling

Today’s databases can be massive and may contain unstructured data types such as images,

documents, or sound and video files. Managing a very large database (VLDB) may require

higher-level skills and additional monitoring and tuning to maintain efficiency.

4. Database Backup and Recovery

DBAs create backup and recovery plans and procedures based on industry best practices,

then make sure that the necessary steps are followed. Backups cost time and money, so the

DBA may have to persuade management to take necessary precautions to preserve data.

41

System admins or other personnel may actually create the backups, but it is the DBA’s

responsibility to make sure that everything is done on schedule.

In the case of a server failure or other form of data loss, the DBA will use existing backups

to restore lost information to the system. Different types of failures may require different

recovery strategies, and the DBA must be prepared for any eventuality. With technology

change, it is becoming ever more typical for a DBA to backup databases to the

cloud, Oracle Cloud for Oracle Databases and MS Azure for SQL Server.

5. Security

A DBA needs to know potential weaknesses of the database software and the company’s

overall system and work to minimise risks. No system is one hundred per cent immune to

attacks, but implementing best practices can minimise risks.

In the case of a security breach or irregularity, the DBA can consult audit logs to see who

has done what to the data. Audit trails are also important when working with regulated data.

6. Authentication

Setting up employee access is an important aspect of database security. DBAs control who

has access and what type of access they are allowed. For instance, a user may have

permission to see only certain pieces of information, or they may be denied the ability to

make changes to the system.

7. Capacity Planning

The DBA needs to know how large the database currently is and how fast it is growing in

order to make predictions about future needs. Storage refers to how much room the database

takes up in server and backup space. Capacity refers to usage level.

https://www.dsp.co.uk/oracle-cloud/
https://www.dsp.co.uk/sql-server-azure/

42

If the company is growing quickly and adding many new users, the DBA will have to create

the capacity to handle the extra workload.

8. Performance Monitoring

Monitoring databases for performance issues is part of the on-going system maintenance a

DBA performs. If some part of the system is slowing down processing, the DBA may need

to make configuration changes to the software or add additional hardware capacity. Many

types of monitoring tools are available, and part of the DBA’s job is to understand what

they need to track to improve the system. 3rd party organisations can be ideal for

outsourcing this aspect, but make sure they offer modern DBA support.

9. Database Tuning

Performance monitoring shows where the database should be tweaked to operate as

efficiently as possible. The physical configuration, the way the database is indexed, and

how queries are handled can all have a dramatic effect on database performance.

With effective monitoring, it is possible to proactively tune a system based on application

and usage instead of waiting until a problem develops.

10. Troubleshooting

DBAs are on call for troubleshooting in case of any problems. Whether they need to quickly

restore lost data or correct an issue to minimize damage, a DBA needs to quickly understand

and respond to problems when they occur.

https://www.dsp.co.uk/modern-dba-support-provider/

43

3.4 CLASSIFICATION OF DATABASE SYSTEMS

A Database Management System or DBMS is a single or set of computer programs that are

responsible for creating, editing, deleting and generally maintaining a database or collection of

data records. They type of database management system is determined by the database model. A

database model is the manner in which the data collection is stored, managed and administered.

The various database management systems based on these data models are:

3.4.1 Relational Database Management Systems

 Relational database management systems are the most widely used database

management systems today. They are relatively easy to use. Relational database

management systems are named so because of the characteristic of normalizing the data

which is usually stored in tables. The relational model relies on normalizing data within

rows and columns in tables. The data can be related to other data in the same table or other

tables which has to be correctly managed by joining one or more tables. Relational models

may be somewhat less efficient than other models; however this may not be a problem with

the processing power and memory found in modern computers. Data in this type of model

is stored is fixed predefined structures and are usually manipulated using Structured Query

Language (SQL). Relational database management systems include Oracle, Ms

SQLServer, IBM DB2, mySQL, SQLite and PostgreSQL among others.

3.4.2 Flat File Based Database Management Systems

 Flat File based database management systems are probably the simplest of them all.

These are sometimes called Flat models. These come in human readable text formats as

well as in binary formats. These are ideal for stand alone applications, holding software

configuration and native format storage models. Flat files in a formatted row and column

model rely on assumptions that every item in a particular model consists of the same data.

44

One common example of this type of database is the CSV (Comma Separated Values) and

another is a spreadsheet such as Ms Excel.

3.4.3 Hierarchical Database Management Systems

 Hierarchical database management systems operates on the parent child tree-like

model. These normally have a 1:N relationship and are good for storing data with items

describing attributes, features and so on. These could store a book with information on

chapters and verses. They can also be used to store a database of songs, recipes, models of

phones and anything that can be stored in a nested format. Hierarchical database

management systems are not quite efficient for various real world operations. One such

example of a Hierarchical database management system is a XML document.

3.4.4 Network Database Management Systems

 A Network database management system uses a data model similar to Hierarchical

database management systems. The major difference here is that the tree structure in the

Network models can have a many parent to many child relational model. The Network

model structure is based on records and sets and most of these databases use SQL for

manipulation of their data. Network database management systems tend to be very flexible

but are rarely used and was very quiet common in the1960s and 1970s. Searching for an

item in this model requires the program to traverse the entire data set which is quit

cumbersome. These have mainly been replaced by Relational database management

systems in today's modern computing.

3.4.5 Object-oriented Database Management Systems

 Object-oriented database management systems borrow from the model of the

Object-oriented programming paradigm. In this database model, the Object and its data or

attributes are seen as one ad accessed through pointers rather than stored in relational table

45

models. Object-oriented database models consist of diverse structures and is quite

extensible. This data model was designed to work closely with programs built with Object-

oriented programming languages thereby almost making the data and the program operate

as one. With this model applications are able to treat the data as native code. There is little

commercial implementation of this database model as it is still developing. Examples of

Object-oriented database management systems include IBM DB4 and DTS/S1 from

Obsidian Dynamics.

3.5 DBMS LANGUAGES AND INTERFACES

The DBMS must provide appropriate languages and interfaces for each category of users.

In this section we discuss the types of languages and interfaces provided by a DBMS and

the user categories targeted by each interface.

3.5.1 DBMS Languages

 Once the design of a database is completed and a DBMS is chosen to implement

the database, the first step is to specify conceptual and internal schemas for the database

and any mappings between the two. In many DBMSs where no strict separation of levels

is maintained, one language, called the data definition language (DDL), is used by the DBA

and by database designers to define both schemas. The DBMS will have a DDL compiler

whose function is to process DDL statements in order to identify descriptions of the schema

constructs and to store the schema description in the DBMS catalog. In DBMSs where a

clear separation is maintained between the conceptual and internal levels, the DDL is used

to specify the conceptual schema only.Another language, the storage definition language

(SDL), is used to specify the internal schema. The mappings between the two schemas may

be specified in either one of these languages. For a true three-schema architecture, we

would need a third language, the view definition language (VDL), to specify user views

and their mappings to the conceptual schema, but in most DBMSs the DDL is used to define

46

both conceptual and external schemas Once the database schemas are compiled and the

database is populated with data, users must have some means to manipulate the database.

Typical manipulations include retrieval, insertion, deletion, and modification of the data.

The DBMS provides a set of operations or a language called the data manipulation language

(DML) for these purposes. There are two main types of DMLs. A high-level or

nonprocedural DML can be used on its own to specify complex database operations

concisely. Many DBMSs allow high-level DML statements either to be entered

interactively from a display monitor or terminal or to be embedded in a general-purpose

programming language. In the latter case, DML statements must be identified within the

program so that they can be extracted by a precompile and processed by the DBMS. A low

level or procedural DML must be embedded in a general-purpose programming language.

This type of DML typically retrieves individual records or objects from the database and

processes each separately. Therefore, it needs to use programming language constructs,

such as looping, to retrieve and process each record from a set of records. Whenever DML

commands, whether high level or low level, are embedded in a general-purpose

programming language, that language is called the host language and the DML is called the

data sublanguage. On the other hand, a high-level DML used in a standalone interactive

manner is called a query language. In general, both retrieval and update commands of a

high-level DML may be used interactively and are hence considered part of the query

language.

3.5.2 DBMS Interfaces

 User-friendly interfaces provided by a DBMS may include the following:

 Menu-Based Interfaces for Web Clients or Browsing. These interfaces

present the user with lists of options (called menus) that lead the user through

the formulation of a request. Menus do away with the need to memorize the

47

specific commands and syntax of a query language; rather, the query is

composed step-by-step by picking options from a menu that is displayed by the

system. Pull-down menus are a very popular technique in Web-based user

interfaces. They are also often used in browsing interfaces, which allow a user

to look through the contents of a database in an exploratory and unstructured

manner.

 Forms-Based Interfaces. A forms-based interface displays a form to each user.

Users can fill out all of the form entries to insert new data, or they can fill out

only certain entries, in which case the DBMS will retrieve matching data for the

remaining entries. Forms are usually designed and programmed for naive users

as interfaces to canned transactions. Many DBMSs have forms specification

languages.

 Graphical User Interfaces. A GUI typically displays a schema to the user in

diagrammatic form. The user then can specify a query by manipulating the

diagram. In many cases, GUIs utilize both menus and forms. Most GUIs use a

pointing device, such as a mouse, to select certain parts of the displayed schema

diagram.

 Natural Language Interfaces. These interfaces accept requests written in

English or some other language and attempt to understand them. A natural

language interface usually has its own schema, which is similar to the database

conceptual schema, as well as a dictionary of important words.

 Speech Input and Output. Limited use of speech as an input query and speech

as an answer to a question or result of a request is becoming commonplace.

Applications with limited vocabularies such as inquiries for telephone directory,

flight arrival/departure, and credit card account information are allowing speech

48

for input and output to enable customers to access this information. The speech

input is detected using a library of predefined words and used to set up the

parameters that are supplied to the queries. For output, a similar conversion

from text or numbers into speech takes place.

 Interfaces for Parametric Users. Parametric users, such as bank tellers, often

have a small set of operations that they must perform repeatedly. For example,

a teller is able to use single function keys to invoke routine and repetitive

transactions such as account deposits or withdrawals, or balance inquiries.

 Interfaces for the DBA. Most database systems contain privileged commands

that can be used only by the DBA staff. These include commands for creating

accounts, setting system parameters, granting account authorization, changing

a schema, and reorganizing the storage structures of a database.

3.6 CLIENT-SERVER MODEL & CENTRALIZED MODEL

OF DBMS

Client-Server Model-

The Client-server model is a distributed application structure that partitions task or

workload between the providers of a resource or service, called servers, and service

requesters called clients. In the client-server architecture, when the client computer sends

a request for data to the server through the internet, the server accepts the requested process

and deliver the data packets requested back to the client. Clients do not share any of their

resources. Examples of Client-Server Model are Email, World Wide Web, etc.

There are four main categories of client-server computing:

 One-Tier architecture: consists of a simple program running on a single computer

without requiring access to the network. User requests don’t manage any network

49

protocols, therefore the code is simple and the network is relieved of the extra

traffic.

 Two-Tier architecture: consists of the client, the server, and the protocol that links

the two tiers. The Graphical User Interface code resides on the client host and the

domain logic resides on the server host. The client-server GUI is written in high-

level languages such as C++ and Java.

 Three-Tier architecture: consists of a presentation tier, which is the User Interface

layer, the application tier, which is the service layer that performs detailed

processing, and the data tier, which consists of a database server that stores

information.

 N-Tier architecture: divides an application into logical layers, which separate

responsibilities and manage dependencies, and physical tiers, which run on separate

machines, improve scalability, and add latency from the additional network

communication. N-Tier architecture can be closed-layer, in which a layer can only

communicate with the next layer down, or open-layer, in which a layer can

communicate with any layers below it.

Here is a quick comparison between client-server and distributed system.

Sr

No.

Client- Server Distributed DBMS

1. Client can access only one server at a

time.

User can access many sites

simultaneously.

2. It is difficult to manage. It is easy to manage.

3. In this data is distributed across clients. In this data is distributed across sites.

https://www.omnisci.com/technical-glossary/graphical-user-interface

50

4. Speed of accessing database is poor as

compared to Distributed DBMS.

Speed of accessing database is much

better than Client/Server Architecture.

5. If somehow server crashes, the whole

system stops.

The crash of one site does not stop the

entire system.

6. Accessing of data is easy to control. Accessing of data is difficult to control.

7. It is less expensive as compared to

Distributed DBMS.

It is expensive.

8. Maintenance cost is low. Maintenance cost is high.

Centralized System-

A centralized database is stored at a single location such as a mainframe computer. It is

maintained and modified from that location only and usually accessed using an internet

connection such as a LAN or WAN. The centralized database is used by organizations such

as colleges, companies, banks etc. As can be seen from the figure 3.1, all the information

for the organization is stored in a single database and known as the centralized database.

Figure 3.1: Centralized Model

51

Advantages

Some advantages of Centralized Database Management System are −

 The data integrity is maximized as the whole database is stored at a single

physical location. This means that it is easier to coordinate the data and it is as

accurate and consistent as possible.

 The data redundancy is minimal in the centralized database. All the data is stored

together and not scattered across different locations. So, it is easier to make sure

there is no redundant data available.

 Since all the data is in one place, there can be stronger security measures around

it. So, the centralized database is much more secure.

 Data is easily portable because it is stored at the same place.

 The centralized database is cheaper than other types of databases as it requires less

power and maintenance.

 All the information in the centralized database can be easily accessed from the

same location and at the same time.

Disadvantages

Some disadvantages of Centralized Database Management System are −

 Since all the data is at one location, it takes more time to search and access it. If

the network is slow, this process takes even more time.

 There is a lot of data access traffic for the centralized database. This may create a

bottleneck situation.

 Since all the data is at the same location, if multiple users try to access it

simultaneously it creates a problem. This may reduce the efficiency of the system.

52

 If there are no database recovery measures in place and a system failure occurs,

then all the data in the database will be destroyed.

3.7 DATA DICTIONARY

A fundamental property of a database system is that it maintains a description of all the

data that it contains. A relational DBMS maintains information about every relation and

index that it contains. The DBMS also maintains information about views, for which no

tuples are stored explicitly; rather, a definition of the view is stored and used to compute

the tuples that belong in the view when the view is queried. This information is stored in a

collection of relations, maintained by the system, called the catalog relations. The catalog

relations are also called the system catalog, the catalog, or the data dictionary. The system

catalog is sometimes referred to as metadata; that is, not data, but descriptive information

about the data. The information in the system catalog is used extensively for query

optimization. Many organizations now use data dictionary systems or information

repositories, which are mini DBMSs that manage meta-data—that is, data that describes

the database structure, constraints, applications, authorizations, users, and so on. These are

often used as an integral tool for information resource management. A useful data

dictionary system should store and manage the following types of information:

a) Descriptions of the schemas of the database system.

b) Detailed information on physical database design, such as storage structures, access

paths, and file and record sizes.

c) Descriptions of the types of database users, their responsibilities, and their access

rights.

d) High-level descriptions of the database transactions and applications and of the

relationships of users to transactions.

53

e) The relationship between database transactions and the data items referenced by

them. This is useful in determining which transactions are affected when certain

data definitions are changed.

f) Usage statistics such as frequencies of queries and transactions and access counts

to different portions of the database.

g) The history of any changes made to the database and applications, and

documentation that describe the reasons for these changes. This is sometimes

referred to as data provenance. This meta-data is available to DBAs, designers, and

authorized users as online system documentation. This improves the control of

DBAs over the information system as well as the users’ understanding and use of

the system.

3.8 CHECK YOUR PROGRESS

1. The database system which supports the majority of concurrent users is classified

as _________.

2. The objects in DBMS belongs to same structure and behaves in the same way are

considered as _________.

3. The type of legacy data model in which data is represented as record types and

limited one to many relationships is called______.

4. The DBMS in which the system involved are coupled together while having local

autonomy is classified as ________.

5. The same class objects are arranged and organized in a way called______.

3.9 SUMMARY

Major benefits of Client-server model of DBMS

 A single server hosting all the required data in a single place facilitates easy

protection of data and management of user authorization and authentication.

 Resources such as network segments, servers, and computers can be added to a

client-server network without any significant interruptions.

54

 Data can be accessed efficiently without requiring clients and the server to be in

close proximity.

 All nodes in the client-server system are independent, requesting data only from the

server, which facilitates easy upgrades, replacements, and relocation of the nodes.

 Data that is transferred through client-server protocols are platform-agnostic.

A Database can be in general defined as a collection of data that is organized efficiently so

that the data can be retrieved and stored easily. A Database which is located and stored in

a single location is called a Centralised Database. The centralized database’s location is

generally a server CPU or desktop or the mainframe computer which is accessed by the

users through a computer network like LAN or WAN.

 An organization may have several business processes running for various

departments simultaneously. This may create issues if the organization wants to check on

the data daily and the centralized database comes in handy in such cases. It is important for

an organization to take decisions and without the presence of a centralized database, it

becomes difficult. Because the organizations though have separate databases for different

departments, they still need to maintain a centralized database where these separate

databases are united to form a single database in order to provide the overall view of the

complete data. For example, if the organization wants to find the details about a particular

employee, they just need to access the centralized database to get all the details about the

employee. So a centralized database not only helps in getting the information quicker with

more ease but also helps in taking the business decisions as well. The usage of the

Centralized Database ensures the security of the data, ease of accessing data from one place

as well as providing a complete view of the data effectively reducing the extra layer of

information.

There are several criteria based on which DBMS is classified. The classification and types

of Database Management System (DBMS) is explained in a detailed manner based on the

different factors.

 Relational Database

 Object Oriented Database

 Object Relational Database

 Hierarchal Database

55

3.10 KEYWORDS

 Relational Databases- A relational database is a collection of data items with pre-

defined relationships between them. These items are organized as a set of tables

with columns and rows. Tables are used to hold information about the objects to be

represented in the database.

 Object Oriented Databases- An object database is a database management system

in which information is represented in the form of objects as used in object-

oriented programming. Object databases are different from

relational databases which are table-oriented. Object-relational databases are a

hybrid of both approaches.

 Network Databases- A network database is a type of database model wherein

multiple member records or files can be linked to multiple owner files and vice

versa.

 Hierarchical Databases- In hierarchical model, data is organized into a tree like

structure with each record is having one parent record and many children. The main

drawback of this model is that, it can have only one to many relationships between

nodes.

3.11 SELF-ASSESSMENT TEST

1. What do you understand by data redundancy?

2. Discuss the classification of database in detail. Giving an example of each type.

3. What are the various type’s relationships in database? Define them.

4. Explain the data dictionary.

5. What is the importance of database management system interfaces?

6. How RDBMS stores its data?

56

3.12 ANSWERS TO CHECK YOUR PROGRESS

1. Multiuser System

2. Same class objects

3. Network model

4. Federated DBMS

5. Acyclic graphs and hierarchies

3.13 REFERENCES / SUGGESTED READINGS

 C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N.

Delhi.

 Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB

Publication 3rd edition.

 Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson

Education.

 Thomas Connolly Carolyn Begg, “Database System”, 3/2, Pearson Education.

 https://www.tutorialspoint.com/Centralized-Database-Management-System

 https://www.omnisci.com/technical-glossary/client-server

 https://www.geeksforgeeks.org/difference-between-client-server-and-distributed-

dbms/

https://www.tutorialspoint.com/Centralized-Database-Management-System
https://www.omnisci.com/technical-glossary/client-server

57

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: MCA-11 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 4 VETTER:

DATABASE SYSTEM ARCHITECTURE & DATA

MODELS

STRUCTURE

4.0 Learning Objective

4.1 Introduction

4.2 Definition

4.3 Three Level of Architecture

4.3.1 Single Level

4.3.2 Two Level

4.3.3 Three Level

4.4 Phases of Database Design

4.5 Applications of DBMS

4.6 Data Modeling Concept

4.7 Object Data Model

4.8 Logical Data Model

4.9 Physical Data Model

4.10 Check Your Progress

4.11 Summary

4.12 Keywords

4.13 Self-Assessment Test

4.14 Answers to check your progress

58

4.15 References / Suggested Readings

4.0 LEARNING OBJECTIVE

6. The objective of this chapter is to make the reader understand the architecture

details of database management system, with three layer of architecture such as

external, internal and conceptual. To know the various applications of database and

types of database and to provide detailed view of the various data models that are

available in DBMS.

4.1 INTRODUCTION

The design of a DBMS depends on its architecture. It can be centralized or decentralized

or hierarchical. The architecture of a DBMS can be seen as either single tier or multi-tier.

An n-tier architecture divides the whole system into related but independent n modules,

which can be independently modified, altered, changed, or replaced.

In 1-tier architecture, the DBMS is the only entity where the user directly sits on

the DBMS and uses it. Any changes done here will directly be done on the DBMS itself. It

does not provide handy tools for end-users. Database designers and programmers normally

prefer to use single-tier architecture. If the architecture of DBMS is 2-tier, then it must have

an application through which the DBMS can be accessed. Programmers use 2-tier

architecture where they access the DBMS by means of an application. Here the application

tier is entirely independent of the database in terms of operation, design, and programming.

A 3-tier architecture as shown in figure 4.1 separates its tiers from each other based on

the complexity of the users and how they use the data present in the database. It is the most

widely used architecture to design a DBMS. Multiple-tier database architecture is highly

59

modifiable, as almost all its components are independent and can be changed

independently.

 Database (Data) Tier −At this tier, the database resides along with its query

processing languages. We also have the relations that define the data and their

constraints at this level.

 Application (Middle) Tier −At this tier reside the application server and the

programs that access the database. For a user, this application tier presents an

abstracted view of the database. End-users are unaware of any existence of the

database beyond the application. At the other end, the database tier is not aware of

any other user beyond the application tier. Hence, the application layer sits in the

middle and acts as a mediator between the end-user and the database.

 User (Presentation) Tier − End-users operate on this tier and they know nothing

about any existence of the database beyond this layer. At this layer, multiple views

of the database can be provided by the application. All views are generated by

applications that reside in the application tier

4.2 DEFINITION

Database architecture focuses on the design, development, implementation and

maintenance of computer programs that store and organize information for businesses,

agencies and institutions. A database architect develops and implements software to meet

the needs of users. The design of a DBMS depends on its architecture.

The DBMS design depends upon its architecture. The basic client/server architecture is

used to deal with a large number of PCs, web servers, database servers and other

components that are connected with networks. The client/server architecture consists of

many PCs and a workstation which are connected via the network.

60

Figure 4.1: Outline of 3 tire architecture

A data model—a collection of concepts that can be used to describe the structure of a

database—provides the necessary means to achieve this abstraction. By structure of a

database we mean the data types, relationships, and constraints that apply to the data. Most

data models also include a set of basic operations for specifying retrievals and updates on

the database.

4.3 THREE LEVEL OF ARCHITECTURE

4.3.1 Single Level-

61

In this type of architecture, the database is readily available on the client machine, any

request made by client doesn’t require a network connection to perform the action on the

database.

For example, let’s say you want to fetch the records of employee from the database

and the database is available on your computer system, so the request to fetch employee

details will be done by your computer and the records will be fetched from the database by

your computer as well. This type of system is generally referred as local database system.

4.3.2 Two Level-

In two-tier architecture, the Database system is present at the server machine and the

DBMS application is present at the client machine, these two machines are connected with

each other through a reliable network as shown in the above diagram.

Whenever client machine makes a request to access the database present at server

using a query language like SQL, the server perform the request on the database and

returns the result back to the client. The application connection interface such as JDBC,

ODBC are used for the interaction between server and client.

4.3.3 Three Level-

DBMS uses three-tier architecture to help achieve and visualize the characteristics

discussed previously. The goal of the three-schema architecture, illustrated in Figure

below, is to separate the user applications from the physical database. In this architecture,

schemas can be defined at the following three levels as shown in figure 4.2:

1. The internal level has an internal schema, which describes the physical storage

structure of the database. The internal schema uses a physical data model and

describes the complete details of data storage and access paths for the database.

2. The conceptual level has a conceptual schema, which describes the structure of the

whole database for a community of users. The conceptual schema hides the details

62

of physical storage structures and concentrates on describing entities, data types,

relationships, user operations, and constraints. Usually, a representational data

model is used to describe the conceptual schema when a database system is

implemented. This implementation conceptual schema is often based on a

conceptual schema design in a high-level data model.

3. The external or view level includes a number of external schemas or user views.

Each external schema describes the part of the database that a particular user group

is interested in and hides the rest of the database from that user group. As in the

previous level, each external schema is typically implemented using a

representational data model, possibly based on an external schema design in a high-

level data model.

External Level ……………………………….

 External/Conceptual Mapping

Conceptual Level

 Conceptual/Internal Mapping
Internal Level

 Stored Databases

Figure 4.2: Three-Level Schema Architecture

Conceptual Schema

Internal Schema

External

view

External

view

External

view

63

Different Mappings in Three level Architecture of DBMS

The process of transforming requests and results between the three levels are called

mappings. The database management system is responsible for this mapping between

internal, external and conceptual schemas.

There are two types of mappings:

1. Conceptual/Internal mapping.

2. The External/Conceptual mapping.

1. The Conceptual/Internal Mapping: This mapping defines the correspondence or

operations between the conceptual view and the physical view. It specifies how the data is

retrieved from physical storage and shown at conceptual level and vice-versa. It specifies

how conceptual records and fields are represented at the internal level. It also allows any

differences in entity names, attribute names and their orders, data types etc., to be resolved.

2. The External/Conceptual Mapping: This mapping defines the correspondence between

the conceptual view and the physical view. It specifies how the data is retrieved from

conceptual level and shown at external level because at external level some part of database

is hidden from a particular user and even names of data fields are changed etc. There could

be one mapping between conceptual and internal level and several mappings between

external and conceptual level. The physical data independence is achieved through

conceptual/internal mapping while the logical data independence is achieved through

external/ conceptual mapping. The information about the mapping requests among various

schema levels are included in the system catalog of DBMS. When schema is changed at

some level, the schema at the next higher level remains unchanged, only the mapping

between the two levels is changed.

64

4.4 PHASES OF DATABASE DESIGN

Database designing for a real-world application starts from capturing the requirements to

physical implementation using DBMS software which consists of following steps shown

below in figure 5.3:

Conceptual Design: The requirements of database are captured using high level

conceptual data model. For Example, the ER model is used for the conceptual design of the

database.

Logical Design: Logical Design represents data in the form of relational model. ER

diagram produced in the conceptual design phase is used to convert the data into the

Relational Model.

Physical Design: In physical design, data in relational model is implemented using

commercial DBMS like Oracle, DB2.

Figure 4.3: Phases of Database Design

65

4.5 APPLICATIONS OF DBMS

Database is a collection of related data and data is a collection of facts and figures that can

be processed to produce information. Mostly data represents recordable facts. Data aids in

producing information, which is based on facts. For example, if we have data about marks

obtained by all students, we can then conclude about toppers and average marks. A database

management system stores data in such a way that it becomes easier to retrieve, manipulate,

and produce information. Following are the important characteristics and applications of

DBMS.

 ACID Properties − DBMS follows the concepts of Atomicity, Consistency,

Isolation, and Durability (normally shortened as ACID). These concepts are

applied on transactions, which manipulate data in a database. ACID properties

help the database stay healthy in multi-transactional environments and in case

of failure.

 Multiuser and Concurrent Access − DBMS supports multi-user environment

and allows them to access and manipulate data in parallel. Though there are

restrictions on transactions when users attempt to handle the same data item, but

users are always unaware of them.

 Multiple views − DBMS offers multiple views for different users. A user who

is in the Sales department will have a different view of database than a person

working in the Production department. This feature enables the users to have a

concentrate view of the database according to their requirements.

 Security − Features like multiple views offer security to some extent where

users are unable to access data of other users and departments. DBMS offers

methods to impose constraints while entering data into the database and

retrieving the same at a later stage. DBMS offers many different levels of

66

security features, which enables multiple users to have different views with

different features. For example, a user in the Sales department cannot see the

data that belongs to the Purchase department. Additionally, it can also be

managed how much data of the Sales department should be displayed to the

user. Since a DBMS is not saved on the disk as traditional file systems, it is very

hard for miscreants to break the code.

5.6 DATA MODELING CONCEPT

Implementation data models that are closer to conceptual data models. A standard

for object databases called the ODMG object model has been proposed by the Object Data

Management Group Physical data models describe how data is stored as files in the

computer by representing

Information such as record formats, record orderings, and access paths. An access

path is a structure that makes the search for particular database records efficient. An index

is an example of an access path that allows direct access to data using an index term or a

keyword. It is similar to the index at the end of this book, except that it may be organized

in a linear, hierarchical (tree-structured), or some other fashion

A data model organizes data (link is external) elements and standardizes how the

data elements relate to one another. Since data elements document real life (link is external)

people, places and things and the events between them, the data model represents reality.

For example a house has many windows or a cat has two eyes. Data models are often used

as an aid to communication between the business people defining the requirements (link is

external) for a computer system (link is external) and the technical people defining the

design in response to those requirements. They are used to show the data needed and created

by business processes (link is external). A data model explicitly determines the structure of

67

data. Data models are specified in a data modeling (link is external) notation, which is often

graphical in form. (Link is external)

A data model can be sometimes referred to as a data structure (link is external),

especially in the context of programming languages (link is external). Data models are often

complemented by function models (link is external).

The primary goal of using data model are:

 Ensures that all data objects required by the database are accurately represented.

Omission of data will lead to creation of faulty reports and produce incorrect results.

 A data model helps design the database at the conceptual, physical and logical

levels.

 Data Model structure helps to define the relational tables, primary and foreign keys

and stored procedures.

 It provides a clear picture of the base data and can be used by database developers

to create a physical database.

 It is also helpful to identify missing and redundant data.

 Though the initial creation of data model is labor and time consuming, in the long

run, it makes your IT infrastructure upgrade and maintenance cheaper and faster.

Types of Data Model:

There are mainly three different types of data models: conceptual data models, logical data

models, and physical data models, and each one has a specific purpose. The data models

are used to represent the data and how it is stored in the database and to set the relationship

between data items.

68

1. Conceptual or Object Data Model: This Data Model defines WHAT the system

contains. This model is typically created by Business stakeholders and Data

Architects. The purpose is to organize, scope and define business concepts and

rules.

2. Logical Data Model: Defines HOW the system should be implemented regardless

of the DBMS. This model is typically created by Data Architects and Business

Analysts. The purpose is to developed technical map of rules and data structures.

3. Physical Data Model: This Data Model describes HOW the system will be

implemented using a specific DBMS system. This model is typically created by

DBA and developers. The purpose is actual implementation of the database.

4.7 OBJECT BASED DATA MODEL

This data model is another method of representing real world objects. It considers each

object in the world as objects and isolates it from each other. It groups its related

functionalities together and allows inheriting its functionality to other related sub-groups.

Let us consider an Employee database to understand this model better. In this database we

have different types of employees – Engineer, Accountant, Manager, Clark. But all these

employees belong to Person group. Person can have different attributes like name, address,

age and phone. What do we do if we want to get a person’s address and phone number?

We write two separate procedure sp_getAddress and sp_getPhone.

What about all the employees above? They too have all the attributes what a person

has. In addition, they have their EMPLOYEE_ID, EMPLOYEE_TYPE and

DEPARTMENT_ID attributes to identify them in the organization and their department.

We have to retrieve their department details, and hence we sp_getDeptDetails procedure.

69

Currently, say we need to have only these attributes and functionality. Since all employees

inherit the attributes and functionalities of Person, we can re-use those features in

Employee. But do we do that? We group the features of person together into class. Hence

a class has all the attributes and functionalities. For example, we would create a person

class and it will have name, address, age and phone as its attribute, and sp_getAddress and

sp_getPhone as procedures in it. The values for these attributes at any instance of time are

object. i.e.; {John, Troy, 25, 2453545 : sp_getAddress (John), sp_getPhone (John)} forms

on person object. {Mathew, Fraser Town, 28, 5645677: sp_getAddress (Mathew),

sp_getPhone (Mathew} forms another person object.

Now, we will create another class called Employee which will inherit all the functionalities

of Person class. In addition it will have attributes EMPLOYEE_ID, EMPLOYEE_TYPE

and DEPARTMENT_ID, and sp_getDeptDetails procedure. Different objects of Employee

class are Engineer, Accountant, Manager and Clerk.

Figure 4.4: Object Data Model Example

70

Here in the figure 4.4 we can observe that the features of Person are available only if other

class is inherited from it. It would be a black box to any other classes. This feature of this

model is called encapsulation. It binds the features in one class and hides it from other

classes. It is only visible to its objects and any inherited classes.

4.8 PHYSICAL DATA MODEL

A Physical Data Model describes a database-specific implementation of the data model.

It offers database abstraction and helps generate the schema. This is because of the richness

of meta-data offered by a Physical Data Model. The physical data model also helps in

visualizing database structure by replicating database column keys, constraints, indexes,

triggers, and other RDBMS features as shown in figure 4.5.

Figure 4.5: Physical data model example

Main Characteristics of a physical data model:

 The physical data model describes data need for a single project or application

though it may be integrated with other physical data models based on project scope.

 Data Model contains relationships between tables that which addresses cardinality

and null ability of the relationships.

 Developed for a specific version of a DBMS, location, data storage or technology

to be used in the project.

 Columns should have exact datatypes, lengths assigned and default values.

71

 Primary and Foreign keys, views, indexes, access profiles, and authorizations, etc.

are defined.

4.9 LOGICAL DATA MODEL

The Logical Data Model is used to define the structure of data elements and to set

relationships between them. The logical data model adds further information to the

conceptual data model elements. The advantage of using a Logical data model is to provide

a foundation to form the base for the Physical model. However, the modeling structure

remains generic as shown in figure 4.6.

Figure 4.6: Logical data model example

4.10 CHECK YOUR PROGRESS

1. The level of data abstraction which describes how the data is actually stored is

_____________.

2. Collection of information stored in a database at a particular moment is

__________.

3. In a hierarchical database, a hashing function is used to locate the ____________.

4. The syntax of a user query is verified by ___________.

5. The application server in a three-tier architecture, communicates with a database

system to access ________.

72

4.11 SUMMARY

The three levels or views are discussed below:

(i) Internal Level: Internal level describes the actual physical storage of data or the way in

which the data is actually stored in memory. This level is not relational because data is

stored according to various coding schemes instead of tabular form (in tables). This is the

low level representation of entire database. The internal view is described by means of an

internal schema. The internal level is concerned with the following aspects:

– Storage space allocation

– Access paths

– Data compression and encryption techniques

– Record placement etc.

The internal level provides coverage to the data structures and file organizations used to

store data on storage devices.

(ii) Conceptual Level: The conceptual level is also known as logical level which describes

the overall logical structure of whole database for a community of users. This level is

relational because data visible at this level will be relational tables and operators will be

relational operators. This level represents entire contents of the database in an abstract form

in comparison with physical level. Here conceptual schema is defined which hides the

actual physical storage and concentrate on relational model of database.

(iii) External Level: The external level is concerned with individual users. This level

describes the actual view of data seen by individual users. The external schema is defined

by the DBA for every user. The remaining part of database is hidden from that user. This

means user can only access data of its own interest. In other words, user can access only

that part of database for which he is authorized by DBA. This level is also relational or very

close to it.

73

4.12 KEYWORDS

 CONCURRENCY CONTROL - Concurrency control is the procedure in DBMS

for managing simultaneous operations without conflicting with each another.

Concurrent access is quite easy if all users are just reading data.

 ACID- The presence of four components — atomicity, consistency, isolation and

durability — can ensure that a database transaction is completed in a timely manner.

When databases possess these components, they are said to be ACID-compliant.

 DATA ARCHITECT- Data architects define how the data will be stored,

consumed, integrated and managed by different data entities and IT systems, as well

as any applications using or processing that data in some way.

 SCHEMA- The term "schema" refers to the organization of data as a blueprint of

how the database is constructed (divided into database tables in the case of relational

databases). The formal definition of a database schema is a set of formulas

(sentences) called integrity constraints imposed on a database.

 INSTANCE- A database instance is a set of memory structures that manage

database files. A database is a set of physical files on disk created by the CREATE

DATABASE statement. The instance manages its associated data and serves the

users of the database.

4.13 SELF-ASSESSMENT TEST

1. Explain the interfaces used for DBMS. Also discuss any special type of

hardware/software requirements for using these interfaces?

2. How many types of architectures are there when we talk about databases?

3. What is n-types of DBMS architecture?

4. Discuss different types of applications of database systems.

5. Write short note the phases of database design.

4.14 ANSWERS TO CHECK YOUR PROGRESS

1. Physical level

2. Instance

3. Root

4. Parser

74

5. Data

4.15 REFERENCES / SUGGESTED READINGS

 C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N.

Delhi.

 Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB

Publication 3rd edition.

 Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson

Education.

 Thomas Connolly Carolyn Begg, “Database System”, 3/2, Pearson Education.

 https://www.geeksforgeeks.org/introduction-of-3-tier-architecture-in-dbms-set-2/

 https://beginnersbook.com/2018/11/dbms-architecture/

 https://medium.com/oceanize-geeks/concepts-of-database-architecture-

dfdc558a93e4

 https://www.tutorialspoint.com/dbms/index.htm

https://www.geeksforgeeks.org/introduction-of-3-tier-architecture-in-dbms-set-2/
https://beginnersbook.com/2018/11/dbms-architecture/
https://medium.com/oceanize-geeks/concepts-of-database-architecture-dfdc558a93e4
https://medium.com/oceanize-geeks/concepts-of-database-architecture-dfdc558a93e4
https://www.tutorialspoint.com/dbms/index.htm

75

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: MCA-11 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 5 VETTER:

SCHEMAS AND DATA INDEPENDENCE

STRUCTURE

5.0 Learning Objective

5.1 Introduction

5.2 Definition

5.3 Schemas

5.4 Mapping and Instances

5.5 Data Independence

5.5.1 Logical Data Independence

5.5.2 Physical Data Independence

5.6 Check Your Progress

5.7 Summary

5.8 Keywords

5.9 Self-Assessment Test

5.10 Answers to check your progress

5.11 References / Suggested Readings

76

5.0 LEARNING OBJECTIVE

 The objective of this chapter is to make the reader understand the DBMS

schemas and how mapping of instances is done. To know the data independence

in detail. To study types of data independence in databases.

5.1 INTRODUCTION

In the chapter we will firstly focus on the data Independence is defined as a property of

DBMS that helps you to change the Database schema at one level of a database system

without requiring to change the schema at the next higher level. Data independence helps

you to keep data separated from all programs that make use of it. You can use this stored

data for computing and presentation. In many systems, data independence is an essential

function for components of the system. Database systems comprise of complex data

structures. Thus, to make the system efficient for retrieval of data and reduce the complexity

of the users, developers use the method of Data Abstraction.

There are mainly three levels of data abstraction:

1. Internal Level: Actual PHYSICAL storage structure and access paths.

2. Conceptual or Logical Level: Structure and constraints for the entire database

3. External or View level: Describes various user views

The term "database schema" can refer to a visual representation of a database, a set of rules

that govern a database, or to the entire set of objects belonging to a particular user. A

database schema represents the logical configuration of all or part of a relational database.

It can exist both as a visual representation and as a set of formulas known as integrity

constraints that govern a database. These formulas are expressed in a data definition

language, such as SQL. As part of a data dictionary, a database schema indicates how the

77

entities that make up the database relate to one another, including tables, views, stored

procedures, and more.

 Typically, a database designer creates a database schema to help programmers

whose software will interact with the database. The process of creating a database schema

is called data modelling. When following the three-schema approach to database design,

this step would follow the creation of a conceptual schema. Conceptual schemas focus on

an organization’s informational needs rather than the structure of a database.

There are two main kinds of database schema:

 A logical database schema conveys the logical constraints that apply to the

stored data. It may define integrity constraints, views, and tables.

 A physical database schema lays out how data is stored physically on a storage

system in terms of files and indices.

5.2 DEFINITION

Data Independence- Data Independence is defined as a property of DBMS that helps you

to change the Database schema at one level of a database system without requiring to

change the schema at the next higher level. Data independence helps you to keep data

separated from all programs that make use of it.

Schema- The term "schema" refers to the organization of data as a blueprint of how the

database is constructed (divided into database tables in the case of relational databases).

The formal definition of a database schema is a set of formulas (sentences) called integrity

constraints imposed on a database.

Sub schema- The subschema is the logical description of that section of the database which

is relevant and available to an application. A subschema can, of course, be common to two

or more different applications.

78

Instances- A database instance is a set of memory structures that manage database files. A

database is a set of physical files on disk created by the CREATE DATABASE statement.

The instance manages its associated data and serves the users of the database.

5.3 SCHEMAS

A database schema is the skeleton structure that represents the logical view of the entire

database. It defines how the data is organized and how the relations among them are

associated. It formulates all the constraints that are to be applied on the data.

A database schema as shown in figure 5.1 defines its entities and the relationship among

them. It contains a descriptive detail of the database, which can be depicted by means of

schema diagrams. It’s the database designers who design the schema to help programmers

understand the database and make it useful.

Figure 5.1: Schemas in DBMS

79

Design of database at logical level is called logical schema, programmers and database

administrators work at this level, at this level data can be described as certain types of data

records gets stored in data structures, however the internal details such as implementation

of data structure is hidden at this level (available at physical level).

Design of database at view level is called view schema. This generally describes end user

interaction with database systems.

A database schema can be divided broadly into two categories −

1. Physical Database Schema − this schema pertains to the actual storage of data and

its form of storage like files, indices, etc. It defines how the data will be stored in a

secondary storage.

2. Logical Database Schema − this schema defines all the logical constraints that need

to be applied on the data stored. It defines tables, views, and integrity constraints.

5.4 MAPPING AND INSTANCES

Mapping- Process of transforming request and results between three levels it's called

mapping. There are the two types of mappings:

1. Conceptual/Internal Mapping

2. External/Conceptual Mapping

1. Conceptual/Internal Mapping:

 The conceptual/internal mapping defines the correspondence between the

conceptual view and the store database.

 It specifies how conceptual record and fields are represented at the internal level.

 It relates conceptual schema with internal schema.

 If structure of the store database is changed.

80

 If changed is made to the storage structure definition-then the conceptual/internal

mapping must be changed accordingly, so that the conceptual schema can remain

invariant.

 There could be one mapping between conceptual and internal levels.

2. External/Conceptual Mapping:

 The external/conceptual mapping defines the correspondence between a particular

external view and conceptual view.

 It relates each external schema with conceptual schema.

 The differences that can exist between these two levels are analogous to those that

can exist between the conceptual view and the stored database.

 Example: fields can have different data types; fields and record name can be

changed; several conceptual fields can be combined into a single external field.

 Any number of external views can exist at the same time; any number of users can

share a given external view: different external views can overlap.

 There could be several mapping between external and conceptual levels.

Database Instance- It is important that we distinguish these two terms individually.

Database schema is the skeleton of database. It is designed when the database doesn't exist

at all. Once the database is operational, it is very difficult to make any changes to it. A

database schema does not contain any data or information. A database instance is a state of

operational database with data at any given time. It contains a snapshot of the database.

Database instances tend to change with time. A DBMS ensures that its every instance (state)

is in a valid state, by diligently following all the validations, constraints, and conditions

that the database designers have imposed.

81

 The data stored in database at a particular moment of time is called instance of

database. Database schema defines the variable declarations in tables that belong to a

particular database; the value of these variables at a moment of time is called the instance

of that database.

For example, let’s say we have a single table student in the database, today the table has

100 records, and so today the instance of the database has 100 records. Let’s say we are

going to add another 100 records in this table by tomorrow so the instance of database

tomorrow will have 200 records in table. In short, at a particular moment the data stored in

database is called the instance that changes over time when we add or delete data from the

database.

Key Difference between schemas and instances-

Schemas Instances

It is the overall description of the database. It is the collection of information stored

in a database at a particular moment.

Schema is same for whole database. Data in instances can be changed using

addition, deletion, updation.

Does not change Frequently. Changes Frequently.

Defines the basic structure of the database i.e

how the data will be stored in the database.

It is the set of Information stored at a

particular time.

82

5.5 DATA INDEPENDENCE

A database system normally contains a lot of data in addition to users’ data. For example,

it stores data about data, known as metadata, to locate and retrieve data easily. It is rather

difficult to modify or update a set of metadata once it is stored in the database. But as a

DBMS expands, it needs to change over time to satisfy the requirements of the users. If the

entire data is dependent, it would become a tedious and highly complex job as shown in

figure 5.2.

Figure 5.2: Data Independence

In DBMS there are two types of data independence

 Physical data independence

 Logical data independence.

83

5.5.1 LOGICAL DATA INDEPENDENCE

Physical Data Independence is defined as the ability to make changes in the structure of the

lowest level of the Database Management System (DBMS) without affecting the higher-

level schemas. Hence, modification in the Physical level should not result in any changes

in the Logical or View levels. Logical data is data about database, that is, it stores

information about how data is managed inside. For example, a table (relation) stored in the

database and all its constraints, applied on that relation. Logical data independence is a kind

of mechanism, which liberalizes itself from actual data stored on the disk see figure 6.3. If

we do some changes on table format, it should not change the data residing on the disk.

Figure 5.3: Data Independence abstract view

Example –

Changes in the lowest level (physical level) are: creating a new file, storing the new files

in the system, creating a new index etc.

Instances of why we may want to do any sort of Data modification in the physical level-

We may want to alter or change the data in the physical level. This is because we may

84

want to add or remove files and indexes to enhance the performance of the database

system and make it faster. Hence, in this way, the Physical Data Independence enables us

to do Performance Tuning. Ideally, when we change the physical level, we would not

want to alter the logical and view level.

How is Physical Data Independence achieved?

Physical Data Independence is achieved by modifying the physical layer to logical layer

mapping (PL-LL mapping). We must ensure that the modification we have done is

localized.

5.5.2 PHYSICAL DATA INDEPENDENCE

All the schemas are logical, and the actual data is stored in bit format on the disk. Physical

data independence is the power to change the physical data without impacting the schema

or logical data. For example, in case we want to change or upgrade the storage system itself

− suppose we want to replace hard-disks with SSD − it should not have any impact on the

logical data or schemas. Logical Data Independence can also be defined as the ability to

make changes in the structure of the middle level of the Database Management System

(DBMS) without affecting the highest-level schema or application programs. Hence,

modification in the logical level should not result in any changes in the view levels or

application programs.

Example –

Changes in the lowest level (physical level) are: adding new attributes to a relation, deleting

existing attributes of the relation etc. Ideally, we would not want to change any application

or programs that do not require to use the modified attribute.

How is Logical Data Independence achieved?

85

Logical Data Independence is achieved by modifying the view layer to logical layer

mapping (VL-LL mapping)

5.6 CHECK YOUR PROGRESS

1. Which of the following is not a schema?

a. Database Schema

b. Physical Schema

c. Critical Schema

d. Logical Schema

2. Logical Design of database is called _____________

3. Snapshot of the DTA in the database at a given instant of time is called _________.

4. Which of the following is the structure of the database?

a. Table

b. Schema

c. Relation

d. None of these

5. A logical description of some portion of database that is required by a user to

perform task is called as_________.

5.7 SUMMARY

The plans of the database and data stored in the database are most important for an

organization, since database is designed to provide information to the organization. The

data stored in the database changes regularly but the plans remain static for longer periods

of time. A schema is plan of the database that give the names of the entities and attributes

and the relationship among them. A schema includes the definition of the database name,

the record type and the components that make up the records. Alternatively, it is defined as

a frame-work into which the values of the data items are fitted. The values fitted into the

frame-work changes regularly but the format of schema remains the same e.g., consider the

database consisting of three files ITEM, CUSTOMER and SALES. Generally, a

86

schema can be partitioned into two categories, i.e., (i) Logical schema and (ii) Physical

schema.

(i) The logical schema is concerned with exploiting the data structures offered by the

DBMS so that the schema becomes understandable to the computer. It is important as

programs use it to construct applications.

(ii) The physical schema is concerned with the manner in which the conceptual database

get represented in the computer as a stored database. It is hidden behind the logical schema

and can usually be modified without affecting the application programs.

The DBMS’s provide DDL and DSDL to specify both the logical and physical schema.

When we talk about database we need to know about subschemas. A subschema is a subset

of the schema having the same properties that a schema has. It identifies a subset of areas,

sets, records, and data names defined in the database schema available to user sessions. The

subschema allows the user to view only that part of the database that is of interest to him.

The subschema defines the portion of the database as seen by the application programs and

the application programs can have different view of data stored in the database. The

different application programs can change their respective subschema without affecting

other’s subschema or view. The Subschema Definition Language (SDL) is used to specify

a subschema in the DBMS. Whereas the data in the database at a particular moment of time

is called an instance or a database state. In a given instance, each schema construct has its

own current set of instances. Many instances or database states can be constructed to

correspond to a particular database schema. Every time we update (i.e., insert, delete or

modify) the value of a data item in a record, one state of the database changes into another

state.

Data independence can be explained using the three-schema architecture. Data

independence refers characteristic of being able to modify the schema at one level of the

87

database system without altering the schema at the next higher level. There are two types

of data independence:

 Logical Data Independence

 Physical Data Independence

5.8 KEYWORDS

 Domain

 View- Any set of tuples; a data report from the RDBMS in response to a query

5.9 SELF-ASSESSMENT TEST

1. What do you understand by data independence? What are its two types?

2. Define the relationship between view and data independence?

3. What is the role of Schema in databases?

4. What are the advantages and disadvantages of view in the databases?

5. Is there any other types of data independence other than logical and physical data

independence?

5.10 ANSWERS TO CHECK YOUR PROGRESS

1. Critical Schema

2. Database Schema

3. Database Instance

4. Schema

5. User View

5.11 REFERENCES / SUGGESTED READINGS

 C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N.

Delhi.

 Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB

Publication 3rd edition.

 Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson

Education.

88

 Thomas Connolly Carolyn Begg, “Database System”, 3/2, Pearson Education.

 https://www.geeksforgeeks.org/physical-and-logical-data-independence/

 https://mcqslearn.com/cs/dbms/data-models-categories-multiple-choice-

questions.php

 https://tutorialink.com/dbms/data-independence.dbms

 https://beginnersbook.com/2015/04/instance-and-schema-in-dbms/

https://www.geeksforgeeks.org/physical-and-logical-data-independence/
https://mcqslearn.com/cs/dbms/data-models-categories-multiple-choice-questions.php
https://mcqslearn.com/cs/dbms/data-models-categories-multiple-choice-questions.php
https://tutorialink.com/dbms/data-independence.dbms
https://beginnersbook.com/2015/04/instance-and-schema-in-dbms/

89

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: MCA-11 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 6 VETTER:

ENTITY-RELATION MODEL AND RELATIONSHIPS

STRUCTURE

6.0 Learning Objective

6.1 Introduction

6.2 Definition

6.3 Entity Relation Model

6.4 Entity Relation Diagrams

6.5 Check Your Progress

6.6 Summary

6.7 Keywords

6.8 Self-Assessment Test

6.8 Answers to check your progress

6.9 References / Suggested Readings

90

6.0 LEARNING OBJECTIVE

 The objective of this chapter is to make the reader understand the meaning, and

concept of entity relation model in database management system, to know what

are entities, attributes, entity sets and relationship instances as well in detail.

6.1 INTRODUCTION

ER model is represents real world situations using concepts, which are commonly used by

people. It allows defining a representation of the real world at logical level.ER model has

no facilities to describe machine-related aspects.

In ER model the logical structure of data is captured by indicating the grouping of

data into entities. The ER model also supports a top-down approach by which details can

be given in successive stages.

A relationship, in the context of databases, is a situation that exists between two relational

database tables when one table has a foreign key that references the primary key of the

other table. Relationships allow relational databases to split and store data in different

tables, while linking disparate data items. For example, in a bank database a

CUSTOMER_MASTER table stores customer data with a primary key column named

CUSTOMER_ID; it also stores customer data in an ACCOUNTS_MASTER table, which

holds information about various bank accounts and associated customers. To link these two

tables and determine customer and bank account information, a corresponding

CUSTOMER_ID column must be inserted in the ACCOUNTS_MASTER table,

referencing existing customer IDs from the CUSTOMER_MASTER table. In this case, the

ACCOUNTS_MASTER table’s CUSTOMER_ID column is a foreign key that references

a column with the same name in the CUSTOMER_MASTER table. This is an example of

a relationship between the two tables.

91

The fundamental feature that differentiates relational databases from other database types

(e.g., flat-files) is the ability to define relationships.

 One-to-One Relationships

A pair of tables bears a one-to-one relationship when a single record in the first

table is related to only one record in the second table, and a single record in the

second table is related to only one record in the first table. This can be shown as in

figure 6.1.

Figure 6.1: One to one relationship

 One to Many relationship

One-to-Many relationship in DBMS is a relationship between instances of an entity

with more than one instance of another entity.

The relation can be shown in figure 6.2 –

92

Figure 6.2: One to Many Relationship

 Many to Many relationship

A pair of tables bears a many-to-many relationship when a single record in the

first table can be related to one or more records in the second table and a single

record in the second table can be related to one or more records in the first table.

Figure 6.3: Many to Many Relationship

93

Assume once again that you're working with TABLE A and TABLE B and that there is a

many-to-many relationship between them. Because of the relationship, a single record in

TABLE A can be related to one or more records (but not necessarily all) in TABLE B.

Conversely, a single record in the TABLE B can be related to one or more records (but

not necessarily all) in TABLE A. Figure 6.3 shows the relationship from the perspective

of each table.

6.2 DEFINITION

Entity- An entity can be a real-world object, either animate or inanimate, that can be easily

identifiable. For example, in a school database, students, teachers, classes, and courses

offered can be considered as entities. All these entities have some attributes or properties

that give them their identity.

An entity set is a collection of similar types of entities. An entity set may contain

entities with attribute sharing similar values. For example, a Students set may contain all

the students of a school; likewise a Teachers set may contain all the teachers of a school

from all faculties. Entity sets need not be disjoint.

Attributes- Entities are represented by means of their properties, called attributes. All

attributes have values. For example, a student entity may have name, class, and age as

attributes.

There exists a domain or range of values that can be assigned to attributes. For example,

a student's name cannot be a numeric value. It has to be alphabetic. A student's age cannot

be negative, etc.

Entity Set and Keys- Key is an attribute or collection of attributes that uniquely identifies

an entity among entity set.

94

For example, the roll_number of a student makes him/her identifiable among students.

 Super Key − A set of attributes (one or more) that collectively identifies an entity

in an entity set.

 Candidate Key − A minimal super key is called a candidate key. An entity set may

have more than one candidate key.

 Primary Key − A primary key is one of the candidate keys chosen by the database

designer to uniquely identify the entity set.

Relationships- The association among entities is called a relationship. For example, an

employee works_at a department, a student enrolls in a course. Here, Works_at and

Enrolls are called relationships.

Database Relationship- Database relationships are associations between tables that are

created using join statements to retrieve data. ... Both tables can have only one record on

each side of the relationship. Each primary key value relates to none or only one record in

the related table.

6.3 ENTITY-RELATIONSHIP MODEL

The entity-relationship (ER) data model allows us to describe the data involved in a real-

world enterprise in terms of objects and their relationships and is widely used to develop

an initial database design. The ER model is important primarily for its role in database

design. It provides useful concepts that allow us to move from an informal description of

what users want from their database to a more detailed, and precise description that can be

implemented in a DBMS.

95

Entities, Attributes and Entity sets

 An entity is an object in the real world that is distinguishable from other objects.

Examples include the following: the Green Dragonzord toy, the toy department, the

manager of the toy department, the home address of the manager of the toy department. It

is often useful to identify a collection of similar entities. Such a collection is called an entity

set. Note that entity sets need not be disjoint; the collection of toy department employees

and the collection of appliance department employees may both contain employee Jai

Parkash (who happens to work in both departments). We could also define an entity set

called Employees that contains both the toy and appliance department employee sets.

 An entity is described using a set of attributes. All entities in a given entity set have

the same attributes; this is essentially what we mean by similar. Our choice of attributes

reflects the level of detail at which we wish to represent information about entities. For

example, the Employees entity set could use name, Adhar number (Adhar_No.), and

parking lot (lot) as attributes. In this case we will store the name, social security number,

and lot number for each employee. However, we will not store, say, an employee's address

(or gender or age). For each attribute associated with an entity set, we must identify a

domain of possible values. For example, the domain associated with the attribute name of

Employees might be the set of 20-character strings. As another example, if the company

rates employees on a scale of 1 to 10 and stores ratings in a field called rating, the associated

domain consists of integers 1 through 10. In some cases, a particular entity may not have

an applicable value for an attribute. For example, the Apartment_number attribute of an

address applies only to addresses that are in apartment buildings and not to other types of

residences, such as single-family homes. Similarly, a College_degrees attribute applies

only to people with college degrees. For such situations, a special value called NULL is

created.

96

For each entity set, we choose a key. A key is a minimal set of attributes whose values

uniquely identify an entity in the set. There could be more than one candidate key; if so,

we designate one of them as the primary key. For now we will assume that each entity set

contains at least one set of attributes that uniquely identifies an entity in the entity set; that

is, the set of attributes contains a key. The following figure shows an Employee Entity with

its attributes:

Figure 6.4 The Employee Entity Set

 As shown in the figure 6.4 an entity set is represented by a rectangle, and an attribute

is represented by an oval. Each attribute in the primary key is underlined. The domain

information could be listed along with the attribute name, but we omit this to keep the

figures compact. The key is Adhar_No.. Several types of attributes occur in the ER model:

simple versus composite, singlevalued versus multivalued, and stored versus derived. First

we define these attribute types and illustrate their use via examples

 Composite versus Simple (Atomic) Attributes. Composite attributes can be

divided into smaller subparts, which represent more basic attributes with

independent meanings. For example, the Address attribute of the EMPLOYEE

entity can be subdivided into Street_address, City, State, and Zip with the values

‘KirtiNaragr’, ‘Sirsa’, ‘Haryana’, and ‘125055.’ Attributes that are not divisible are

called simple or atomic attributes. Composite attributes can form a hierarchy; for

Employee

Name Lot No. SSN

97

example, Street_address can be further subdivided into three simple component

attributes: Number, Street, and Apartment_number. The value of a composite

attribute is the concatenation of the values of its component simple attributes.

 Single-Valued versus Multivalued Attributes. Most attributes have a single value

for a particular entity; such attributes are called single-valued. For example, Age is

a single-valued attribute of a person. In some cases an attribute can have a set of

values for the same entity—for instance, a Colors attribute for a car, or a

College_degrees attribute for a person. Cars with one color have a single value,

whereas two-tone cars have two color values. Similarly, one person may not have a

college degree, another person may have one, and a third person may have two or

more degrees; therefore, different people can have different numbers of values for

the College_degrees attribute. Such attributes are called multivalued.

 Stored versus Derived Attributes. In some cases, two (or more) attribute values

are related—for example, the Age and Birth_date attributes of a person. For a

particular person entity, the value of Age can be determined from the current

(today’s) date and the value of that person’s Birth_date. The Age attribute is hence

called a derived attribute and is said to be derivable from the Birth_date attribute,

which is called a stored attribute. Some attribute values can be derived from related

entities; for example, an attribute Number_of_employees of a DEPARTMENT

entity can be derived by counting the number of employees related to (working for)

that department.

 Complex Attributes. Notice that, in general, composite and multivalued attributes

can be nested arbitrarily. We can represent arbitrary nesting by grouping

components of a composite attribute between parentheses () and separating the

98

components with commas, and by displaying multivalued attributes between braces

{ }. Such attributes are called complex attributes.

Relationship and Relationship Set

 A relationship is an association among two or more entities. For example, we may

have the relationship that Ashok works in the pharmacy department. As with entities, we

may wish to collect a set of similar relationships into a relationship set. A relationship set

can be thought of as a set of n-tuples :

{e1, e2…………en| e1∈ E1………………………. en ∈ En}

In ER diagrams, relationship types are displayed as diamond-shaped boxes, which are

connected by straight lines to the rectangular boxes representing the participating entity

types. The relationship name is displayed in the diamond-shaped box.

 Employee Works_for Department

Figure 6.5 Works_for relationship between Employee and Department

Degree of a Relationship Type. The degree of a relationship type is the number of

participating entity types. Hence, the WORKS_FOR relationship is of degree two as shown

e1

e2

e3.

.

.

.

.

.en

r1

r2

r3

.

.

.

.

rn

d1

d2

d3

.

.

.

.

dn

.

99

in figure 6.5. A relationship type of degree two is called binary, and one of degree three is

called ternary.

Role Names and Recursive Relationships. Each entity type that participates in a

relationship type plays a particular role in the relationship. The role name signifies the role

that a participating entity from the entity type plays in each relationship instance, and helps

to explain what the relationship means. For example, in the WORKS_FOR relationship

type, EMPLOYEE plays the role of employee or worker and DEPARTMENT plays the

role of department or employer. Role names are not technically necessary in relationship

types where all the participating entity types are distinct, since each participating entity

type name can be used as the role name. However, in some cases the same entity type

participates more than once in a relationship type in different roles. In such cases the role

name becomes essential for distinguishing the meaning of the role that each participating

entity plays. Such relationship types are called recursive relationships. The

SUPERVISION relationship type relates an employee to a supervisor, where both

employee and supervisor entities are members of the same

EMPLOYEE entity set. Hence, the EMPLOYEE entity type participates twice in

SUPERVISION: once in the role of supervisor (or boss), and once in the role of supervisee

(or subordinate)

Constraints on Binary Relationship Types

• Cardinality Ratios for Binary Relationships. The cardinality ratio for a binary

relationship specifies the maximum number of relationship instances that an entity

can participate in. For example, in the WORKS_FOR binary relationship type,

DEPARTMENT: EMPLOYEE is of cardinality ratio 1: N, meaning that each

department can be related to (that is, employs) any number of employees, but an

employee can be related to (work for) only one department.

100

• Participation Constraints and Existence Dependencies. The participation

constraint specifies whether the existence of an entity depends on its being related

to another entity via the relationship type. There are two types of participation

constraints—total and partial—that we illustrate by example. If a company policy

states that every employee must work for a department, then an employee entity can

exist only if it participates in at least one WORKS_FOR relationship instance. Thus,

the participation of EMPLOYEE in WORKS_FOR is called total participation,

meaning that every entity in the total set of employee entities must be related to a

department entity via WORKS_FOR. Total participation is also called existence

dependency. In manage relationship we do not expect every employee to manage a

department, so the participation of EMPLOYEE in the MANAGES relationship

type is partial, meaning that some or part of the set of employee entities are related

to some department entity via MANAGES, but not necessarily all. In ER diagrams,

total participation (or existence dependency) is displayed as a double line

connecting the participating entity type to the relationship, whereas partial

participation is represented by a single line.

Weak Entity Types

 Entity types that do not have key attributes of their own are called weak entity types.

In contrast, regular entity types that do have a key attribute—which include all the examples

discussed so far—are called strong entity types. Entities belonging to a weak entity type

are identified by being related to specific entities from another entity type in combination

with one of their attribute values. We call this other entity type the identifying or owner

entity type, and we call the relationship type that relates a weak entity type to its owner the

identifying relationship of the weak entity type.

The following table 9.1 shows the basic notations for ER diagram

101

Entity Type

Weak Entity Type

Relationship Type

Identifying Relationship

Attribute

Key Attribute

Multivalued Attribute

Composite Attribute

Derived Attribute

Table 6.1 Basic notation in E-R Model

102

6.4 ENTITY RELATION DIAGRAMS

In the following figure 6.6 we have two entities Student and College and their relationship.

1. ER Diagram of Student and College - The relationship between Student and College

is many to one as a college can have many students however a student cannot study in

multiple colleges at the same time. Student entity has attributes such as Stu_Id, Stu_Name

& Stu_Addr and College entity has attributes such as Col_ID & Col_Name.

Figure 6.6: ER diagram of Student and College relationship

2. ER Diagram of University Database

Figure 6.7: ER Diagram of University Database System

103

ER Diagram of Library Database

Figure 6.8: ER Diagram of Library Database

Figure 6.7 and figure 6.8 are the examples of some ER diagrams.

6.5 CHECK YOUR PROGRESS

1. A many to many relationship between two entities usually results in how many

tables?

2. An ________ is a set of entities of the same type that share the same properties, or

attributes.

3. Entity is a _________

4. Every weak entity set can be converted into a strong entity set by:

5. E-R modelling technique is a ____________.

6.6 SUMMARY

ER Model is used to model the logical view of the system from data perspective which

consists of these components as shown in figure 6.9:

104

Entity, Entity Type, Entity Set –

An Entity may be an object with a physical existence – a particular person, car, house, or

employee – or it may be an object with a conceptual existence – a company, a job, or a

university course.

An Entity is an object of Entity Type and set of all entities is called as entity set. e.g.; E1 is

an entity having Entity Type Student and set of all students is called Entity Set

Attribute(s):

Attributes are the properties which define the entity type. For example, Roll_No, Name,

DOB, Age, Address, Mobile_No are the attributes which defines entity type Student.

Figure 6.9: Components of ER diagram

105

Relationship-

A relationship type represents the association between entity types. For example,‘Enrolled

in’ is a relationship type that exists between entity type Student and Course. In ER diagram,

relationship type is represented by a diamond and connecting the entities with lines.

Degree of Relationship set-

The number of different entity sets participating in a relationship set is called as degree of

a relationship set.

1. UnaryRelationship– When there is only ONE entity set participating in a relation, the

relationship is called as unary relationship. For example, one person is married to only

one person.

2. BinaryRelationship– When there are TWO entities set participating in a relation,

the relationship is called as binary relationship.For example, Student is enrolled in

Course.

3. n-aryRelationship– When there are n entities set participating in a relation, the

relationship is called as n-ary relationship.

One to one –A row in table A can have only one matching row in table B, and vice versa.

This is not a common relationship type, as the data stored in table B could just have easily

been stored in table A. However, there are some valid reasons for using this relationship

type. A one-to-one relationship can be used for security purposes, to divide a large table,

and various other specific purposes.

One to Many- This is the most common relationship type. In this type of relationship, a row

in table A can have many matching rows in table B, but a row in table B can have only one

matching row in table A.

https://database.guide/what-is-a-row/
https://database.guide/what-is-a-table/

106

Many to many- In a many-to-many relationship, a row in table. A can have many matching

rows in table B, and vice versa. A many-to-many relationship could be thought of as two

one-to-many relationships, linked by an intermediary table. The intermediary table is

typically referred to as a “junction table” (also as a “cross-reference table”). This table is

used to link the other two tables together. It does this by having two fields that reference

the primary key of each of the other two tables.

6.7 KEYWORDS

 ERD- An Entity Relationship Diagram (ERD) is a snapshot of data structures. An

Entity Relationship Diagram shows entities (tables) in a database and relationships

between tables within that database.

 DATA MODEL- A data model is an abstract model that organizes elements of data

and standardizes how they relate to one another and to the properties of real-world

entities

6.8 SELF-ASSESSMENT TEST

1. When is the concept of a weak entity used in data modeling? Define the terms owner

entity type, weak entity type, identifying relationship type, and Partial key.

2. Discuss the conventions for displaying an ER schema as an ER diagram.

3. Discuss the naming conventions used for ER schema diagrams.

4. What is a network data model? Discuss with example.

5. Describe the hierarchical model with the constraints and structure of database.

6.9 ANSWERS TO CHECK YOUR PROGRESS

1. Three

2. Entity Set

3. Real World thing

107

4. Adding appropriate attributes

5. Top-down appraoch

6.10 REFERENCES / SUGGESTED READINGS

 C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N.

Delhi.

 Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB

Publication 3rd edition.

 Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson

Education.

 Thomas Connolly Carolyn Begg, “Database System”, 3/2, Pearson Education.

 https://www.tutorialspoint.com/dbms/er_model_basic_concepts.htm

https://www.tutorialspoint.com/dbms/er_model_basic_concepts.htm

108

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: MCA-11 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 7 VETTER:

RELATIONAL MODEL AND QUERY LANGUAGE

7.0 Learning Objective

7.1 Introduction

7.2 Definition

7.3 What is RDBMS?

7.4 Difference between DBMS and RDBMS

7.5 Relational Algebra

7.6 Relational Calculus

7.7 Characteristics of SQL

7.8 SQL Data Types

7.9 SQL Literals

7.10 SQL Constraints

7.11 Check Your Progress

7.12 Summary

7.13 Keywords

7.14 Self-Assessment Test

7.15 Answers to check your progress

7.16 References / Suggested Readings

109

7.0 LEARNING OBJECTIVE

 The objective of this chapter is to understand the concepts of relational database, to

know the difference between DBMS and RDBMS. To understand the parameters

of RDBMS and components of RDBMS in detail such as the concepts and notations

of the relational model. This chapter is helps the reader to understand the most

popular and widely used query language SQL. This chapter presents the main

features of the SQL standard for commercial relational DBMSs. The main

characteristics of SQL, SQL data types and SQL literals.

7.1 INTRODUCTION

The relational model was first introduced by Ted Codd of IBM Research in 1970 in a classic

paper (Codd 1970), and attracted immediate attention due to its simplicity and

mathematical foundation. The model uses the concept of a mathematical relation-which

looks somewhat like a table of values-as its basic building block, and has its theoretical

basis in set theory and first-order predicate logic. In this chapter we discuss the basic

characteristics of the model and its constraints. The first commercial implementations of

the relational model became available in the early 1980s, such as the Oracle DBMS and the

SQL/DS system on the MVS operating system by IBM. Since then, the model has been

implemented in a large number of commercial systems. Current popular relational DBMSs

(RDBMSs) include DB2 and lnformix Dynamic Server (from IBM), Oracle and Rdb (from

Oracle), and SQL Server and Access (from Microsoft). Most of the problems faced at the

time of implementation of any system are outcome of a poor database design. In many cases

it happens that system has to be continuously modified in multiple respects due to changing

requirements of users. It is very important that a proper planning has to be done. A relation

in a relational database is based on a relational schema, which consists of number of

110

attributes. A relational database is made up of a number of relations and corresponding

relational database schema. The goal of a relational database design is to generate a set of

relation schema that allows us to store information without unnecessary redundancy and

also to retrieve information easily. One approach to design schemas that are in an

appropriate normal form. The normal forms are used to ensure that various types of

anomalies and inconsistencies are not introduced into the database.

 Database management systems (DBMS) must have a query language so that the

users can access the data stored in the database. Relational algebra (RA) is considered as

a procedural query language where the user tells the system to carry out a set of operations

to obtain the desired results. i.e. The user tells what data should be retrieved from the

database and how to retrieve it. In this article, I will give a brief introduction to relational

algebra and go through a few operations with examples and PostgreSQL commands.

Relational Calculus, which is a non-procedural query language. In this chapter, you will

learn about the relational calculus and its concept about the database management system.

A certain arrangement is explicitly stated in relational algebra expression, and a plan for

assessing the query is implied. In the relational calculus, there is no description and

depiction of how to assess a query; instead, a relational calculus query focuses on what is

to retrieve rather than how to retrieve it. It uses mathematical predicate calculus. The

relational calculus is not the same as that of differential and integral calculus in mathematics

but takes its name from a branch of symbolic logic termed as predicate calculus. When

applied to databases, it is found in two forms. These are

 Tuple relational calculus which was originally proposed by Codd in the year 1972

and

111

 Domain relational calculus which was proposed by Lacroix and Pirotte in the year

1977

A calculus expression specifies what is to be retrieved rather than how to retrieve it.

Therefore, the relational calculus is considered to be a nonprocedural language. This differs

from relational algebra, where we must write a sequence of operations to specify a retrieval

request; hence, it can be considered as a procedural way of stating a query. It is possible to

nest algebra operations to form a single expression; however, a certain order among the

operations is always explicitly specified in a relational algebra expression. This order also

influences the strategy for evaluating the query. A calculus expression may be written in

different ways, but the way it is written has no bearing on how a query should be evaluated.

The SQL language may be considered one of the major reasons for the commercial

success of relational databases. Because it became a standard for relational databases, users

were less concerned about migrating their database applications from other types of

database systems—for example, network or hierarchical systems—to relational systems.

This is because even if the users became dissatisfied with the particular relational DBMS

product they were using, converting to another relational DBMS product was not expected

to be too expensive and time-consuming because both systems followed the same language

standards. However, the relational algebra operations are considered to be too technical for

most commercial DBMS users because a query in relational algebra is written as a sequence

of operations that, when executed, produces the required result. Hence, the user must

specify how—that is, in what order—to execute the query operations. On the other hand,

the SQL language provides a higher-level declarative language interface, so the user only

specifies what the result is to be, leaving the actual optimization and decisions on how to

execute the query to the DBMS. Although SQL includes some features from relational

algebra, it is based to a greater extent on the tuple relational calculus.

112

 The name SQL is presently expanded as Structured Query Language. Originally,

SQL was called SEQUEL (Structured English QUEry Language) and was designed and

implemented at IBM Research as the interface for an experimental relational database

system called SYSTEM R. SQL is now the standard language for commercial relational

DBMSs. A joint effort by the American National Standards Institute (ANSI) and the

International Standards Organization (ISO) has led to a standard version of SQL (ANSI

1986), called SQL-86 or SQL1. A revised and much expanded standard called SQL-92

(also referred to as SQL2) was subsequently developed. The next standard that is well-

recognized is SQL:1999, which started out as SQL3. Two later updates to the standard are

SQL:2003 and SQL:2006, which added XML features among other updates to the

language. Another update in 2008 incorporated more object database features in SQL. .SQL

is a comprehensive database language: It has statements for data definitions, queries, and

updates. Hence, it is both a DDL and a DML. In addition, it has facilities for defining views

on the database, for specifying security and authorization, for defining integrity constraints,

and for specifying transaction controls. It also has rules for embedding SQL statements into

a general-purpose programming language such as Java, COBOL, or C/C++.

7.2 DEFINITION

Relational Algebra- Relational algebra is a procedural query language that works on

relational model. The purpose of a query language is to retrieve data from database or

perform various operations such as insert, update, and delete on the data. When I say that

relational algebra is a procedural query language, it means that it tells what data to be

retrieved and how to be retrieved. On the other hand relational calculus is a non-procedural

query language, which means it tells what data to be retrieved but doesn’t tell how to

retrieve it. We will discuss relational calculus in a separate tutorial. Relational algebra is a

113

procedural query language. It gives a step by step process to obtain the result of the query.

It uses operators to perform queries.

What is Relational Calculus?

Relational calculus is a non-procedural query language that tells the system what data to be

retrieved but doesn’t tell how to retrieve it. Relational calculus is a non-procedural query

language. In the non-procedural query language, the user is concerned with the details of

how to obtain the end results. The relational calculus tells what to do but never explains

how to do. Contrary to Relational Algebra which is a procedural query language to fetch

data and which also explains how it is done, Relational Calculus in non-procedural query

language and has no description about how the query will work or the data will be fetched.

It only focusses on what to do, and not on how to do it.

Relational Calculus exists in two forms as shown in figure 4.1:

1. Tuple Relational Calculus (TRC)

2. Domain Relational Calculus (DRC)

Figure 7.1: Types of relational calculus

114

SQL- SQL uses the terms table, row, and column for the formal relational model terms

relation, tuple, and attribute, respectively. Unlike most programming languages, SQL is

unique in that it is not procedural but declarative in nature. This means that when using this

language one states what data is desired and not how to get that data. A component within

the database server known as the optimizer will automatically determine how to get the data

most efficiently. Therefore the user may concentrate solely on what data is desired and then

allow the database to automatically select the optimum method by which to retrieve that

data.

7.3 WHAT IS RDBMS?

RDBMS stands for Relational Database Management System. RDBMS data is structured

in database tables, fields and records. Each RDBMS table consists of database table rows.

Each database table row consists of one or more database table fields. RDBMS store the

data into collection of tables, which might be related by common fields (database table

columns). RDBMS also provide relational operators to manipulate the data stored into the

database tables. Most RDBMS use SQL as database query language. The most popular

RDBMS are MS SQL Server, DB2, Oracle and MySQL. The relational model is an

example of record-based model. Record based models are so named because the database

is structured in fixed format records of several types. Each table contains records of a

particular type. Each record type defines a fixed number of fields, or attributes. The

columns of the table correspond to the attributes of the record types. The relational data

model is the most widely used data model, and a vast majority of current database systems

are based on the relational model. The relational model was designed by the IBM research

scientist and mathematician, Dr. E.F.Codd. Many modern DBMS do not conform to the

Codd’s definition of a RDBMS, but nonetheless they are still considered to be RDBMS.

115

Two of Dr.Codd’s main focal points when designing the relational model were to further

reduce data redundancy and to improve data integrity within database systems.

 The relational model originated from a paper authored by Dr.codd entitled “A

Relational Model of Data for Large Shared Data Banks”, written in 1970. This paper

included the following concepts that apply to database management systems for relational

databases. The relation is the only data structure used in the relational data model to

represent both entities and relationships between them. Rows of the relation are referred to

as tuples of the relation and columns are its attributes. Each attribute of the column are

drawn from the set of values known as domain. The domain of an attribute contains the set

of values that the attribute may assume. From the historical perspective, the relational data

model is relatively new .The first database systems were based on either network or

hierarchical models .The relational data model has established itself as the primary data

model for commercial data processing applications. Its success in this domain has led to its

applications outside data processing in systems for computer aided design and other

environments. A relational database management system (RDBMS) is a collection of

programs and capabilities that enable IT teams and others to create, update, administer and

otherwise interact with a relational database. RDBMS store data in the form of tables, with

most commercial relational database management systems using Structured Query

Language (SQL) to access the database. However, since SQL was invented after the initial

development of the relational model, it is not necessary for RDBMS use.

7.4 DIFFERENCE BETWEEN DBMS AND RDBMS

A DBMS has to be persistent, that is it should be accessible when the program created the

data ceases to exist or even the application that created the data restarted. A DBMS also

has to provide some uniform methods independent of a specific application for accessing

the information that is stored. RDBMS is a Relational Data Base Management System

116

Relational DBMS. This adds the additional condition that the system supports a tabular

structure for the data, with enforced relationships between the tables. This excludes the

databases that don't support a tabular structure or don't enforce relationships between tables.

You can say DBMS does not impose any constraints or security with regard to data

manipulation it is user or the programmer responsibility to ensure the ACID PROPERTY

of the database whereas the RDBMS is more with this regard because RDBMS define the

integrity constraint for the purpose of holding ACID PROPERTY.

 In general, databases store sets of data that can be queried for use in other

applications. A database management system supports the development, administration and

use of database platforms. An RDBMS is a type of database management system (DBMS)

that stores data in a row-based table structure which connects related data elements. An

RDBMS includes functions that maintain the security, accuracy, integrity and consistency

of the data. This is different than the file storage used in a DBMS. Other differences

between database management systems and relational database management systems

include:

 Number of allowed users- While a DBMS can only accept one user at a time, an

RDBMS can operate with multiple users.

 Hardware and software requirements- A DBMS needs less software and

hardware than an RDBMS.

 Amount of data- RDBMS can handle any amount of data, from small to large,

while a DBMS can only manage small amounts.

 Database structure- In a DBMS, data is kept in a hierarchical form, whereas an

RDBMS utilizes a table where the headers are used as column names and the rows

contain the corresponding values.

117

 ACID implementation- DBMS do not use the atomicity, consistency, isolation and

durability (ACID) model for storing data. On the other hand, RDBMS base the

structure of their data on the ACID model to ensure consistency.

 Distributed databases- While an RDBMS offers complete support for distributed

databases, a DBMS will not provide support.

 Types of programs managed- While an RDBMS helps manage the relationships

between its incorporated tables of data, a DBMS focuses on maintaining databases

that are present within the computer network and system hard disks.

 Support of database normalization- An RDBMS can be normalized, but a DBMS

cannot.

DBMS vs RDBMS using different parameters

Parameter DBMS RDBMS

Storage DBMS stores data as a file. Data is stored in the form of tables.

Database structure

DBMS system, stores data in either a

navigational or hierarchical form.

RDBMS uses a tabular structure

Where the headers are the column

names, and the rows contain

corresponding values

Number of Users DBMS supports single user only. It supports multiple users.

ACID

In a regular database,

the data may not be

Relational databases are harder to

construct, but they are consistent and

118

Parameter DBMS RDBMS

stored following the ACID model.

This can develop inconsistencies

in the database.

well structured. They obey ACID

(Atomicity, Consistency,

Isolation, Durability).

Type of program

It is the program for managing the

databases on the computer networks

and the system hard disks.

It is the database systems which are

used for maintaining the relationships

among the tables.

Hardware and software

needs.

Low software and hardware needs.

Higher hardware and software

need.

Integrity constraints

DBMS does not support the integrity

constants. The integrity constants are

not imposed at the file level.

RDBMS supports the integrity

constraints at the schema level.

Values beyond a defined range

cannot be stored into the particular

RDMS column.

Normalization DBMS does not support Normalization RDBMS can be Normalized.

Distributed Databases

DBMS does not support distributed

database.

RBMS offers support for distributed

databases.

119

Parameter DBMS RDBMS

Ideally suited for

DBMS system mainly deals with small

quantity of data.

RDMS is designed to handle a large

amount of data.

7.6 RELATIONAL ALGEBRA

The relational algebra is often considered to be an integral part of the relational data model,

and its operations can be divided into two groups. One group includes set operations from

mathematical set theory; these are applicable because each relation is defined to be a set of

tuples in the formal relational model. Set operations include UNION, INTERSECTION,

SET DIFFERENCE, and CARTESIAN PRODUCT. The other group consists of operations

developed specifically for relational databases-these include SELECT PROJECT, and

JOIN, among others. This chapter firstly discuss the SELECT and POJECT operations

because they are unary operations that operate on single relations. Then the chapter discusses

the JOIN and other complex binary operations, which operate on two tables. Some common

database requests cannot be performed with the original relational algebra operations, so

additional operations were created to express these requests. These include aggregate

functions, which are operations that can summarize data from the tables, as well as

additional types of JOIN and UNION operations. These operations were added to the

original relational algebra because of their importance to many database applications. As,

the chapter ends with the discussion of relational algebra, the subsequent chapter will focus

on describing the other main formal language for relational databases and relational calculus.

120

The relational algebra is a theoretical procedural query language which takes an instance

of relations and does operations that work on one or more relations to describe another

relation without altering the original relation(s). Thus, both the operands and the outputs

are relations. So the output from one operation can turn into the input to another operation,

which allows expressions to be nested in the relational algebra, just as you nest arithmetic

operations. This property is called closure: relations are closed under the algebra, just as

numbers are closed under arithmetic operations.

The relational algebra is a relation-at-a-time (or set) language where all tuples are

controlled in one statement without the use of a loop. There are several variations of syntax

for relational algebra commands, and you use a common symbolic notation for the

commands and present it informally.

The primary operations of relational algebra are as follows:

 Select

 Project

 Union

 Set different

 Cartesian product

 Rename

Relational algebra is a family of algebras with a well-founded semantics used for modelling

the data stored in relational databases, and defining. It takes instances of relations as input

and yields instances of relations as output. It uses operators to perform queries. An operator

can be either unary or binary. They accept relations as their input and yield relations as

their output. Relational algebra is performed recursively on a relation and intermediate

121

results are also considered relations. Relational algebra collects instances of relations as

input and gives occurrences of relations as output. It uses various operations to perform this

action. SQL Relational algebra query operations are performed recursively on a relation.

The output of these operations is a new relation, which might be formed from one or more

input relations.

The figure 7.2 shows how we use relational algebra to fetch information or data from a

bigger dataset or table. In relational algebra, input is a relation (table from which data has

to be accessed) and output is also a relation (a temporary table holding the data asked for

by the user).

Figure 7.2: Use of Relational Algebra

Relational Algebra works on the whole table at once, so we do not have to use loops etc.

to iterate over all the rows (tuples) of data one by one. All we have to do is specify the

table name from which we need the data, and in a single line of command, relational

algebra will traverse the entire given table to fetch data for you.

122

7.7 RELATIONAL CALCULUS

Relational calculus is a non-procedural query language that tells the system what data to be

retrieved but doesn’t tell how to retrieve it. Relational calculus is a non-procedural query

language. Relational Calculus exists in two forms.

1. Tuple Relational Calculus (TRC)

2. Domain Relational Calculus (DRC)

Tuple Relational Calculus

In the tuple relational calculus, you will have to find tuples for which a predicate is true.

The calculus is dependent on the use of tuple variables. A tuple variable is a variable that

'ranges over' a named relation: i.e., a variable who’s only permitted values are tuples of the

relation. The tuple relational calculus is specified to select the tuples in a relation. In TRC,

filtering variable uses the tuples of a relation. The result of the relation can have one or

more tuples. Tuple Relational Calculus is a non-procedural query language unlike relational

algebra. Tuple Calculus provides only the description of the query but it does not provide

the methods to solve it.

Domain Relational Calculus

In contrast to tuple relational calculus, domain relational calculus uses list of attribute to be

selected from the relation based on the condition. It is same as TRC, but differs by selecting

the attributes rather than selecting whole tuples. In the tuple relational calculus, you have

use variables that have a series of tuples in a relation. In the domain relational calculus, you

will also use variables, but in this case, the variables take their values from domains of

attributes rather than tuples of relations. In domain relational calculus, filtering is done

123

based on the domain of the attributes and not based on the tuple values. The second form

of relation is known as Domain relational calculus.

 In domain relational calculus, filtering variable uses the domain of attributes.

Domain relational calculus uses the same operators as tuple calculus.

 It uses logical connectives ∧ (and), ∨ (or) and ┓ (not).

 It uses Existential (∃) and Universal Quantifiers (∀) to bind the variable.

7.7 CHARACTERISTICS OF SQL

SQL is both an easy-to-understand language and a comprehensive tool for managing data.

Here are some of the major features of SQL and the market forces that have made it

successful:

a) Vendor Independence

A SQL-based database and the programs that use it can be moved from one DBMS

to another vendor's DBMS with minimal conversion effort and little retraining of

personnel.

b) SQL Standards

In 1986, the American National Standards Institute (ANSI) and the International

Standards Organization (ISO) published the first official standard for SQL which

was expanded in 1989, 1992 and 1999. The evolving standards serve as an official

stamp of approval for SQL and have speeded its market acceptance.

c) Portability across Computer Systems

SQL databases run on various computer systems, ranging from mainframes to

stand-alone computers. SQL-based applications that begin on single-user or

departmental server systems can be moved to larger server systems as they grow.

124

d) Relational Foundation

We already know that SQL is a language for relational databases. The relational

database model and row/column structure make SQL simple and easy to

understand. he relational model also has a strong theoretical foundation that has

guided the evolution and implementation of relational databases.

e) Programmatic Database Access

SQL is also a database language used by programmers to write applications that

access a database. The same SQL statements are used for both interactive and

programmatic access, so the database access parts of a program can be tested first

with interactive SQL and then embedded into the program.

7.8 SQL DATA TYPES

The basic data types available for attributes include numeric, character string, bit

string, Boolean, date, and time.

■ Numeric data types include integer numbers of various sizes (INTEGER or INT, and

SMALLINT) and floating-point (real) numbers of various precision (FLOAT or REAL,

and DOUBLE PRECISION). Formatted numbers can be declared by using

DECIMAL(i,j)—or DEC(i,j) or NUMERIC(i,j)—where i, the precision, is the total number

of decimal digits and j, the scale, is the number of digits after the decimal point. The default

for scale is zero, and the default for precision is implementation-defined.

■ Character-string data types are either fixed length—CHAR(n) or CHARACTER(n),

where n is the number of characters—or varying length— VARCHAR(n) or CHAR

VARYING(n) or CHARACTER VARYING(n), where n is the maximum number of

characters. When specifying a literal string value, it is placed between single quotation

marks (apostrophes), and it is case sensitive (a distinction is made between uppercase and

125

lowercase). For fixedlength strings, a shorter string is padded with blank characters to the

right. For example, if the value ‘Sudha’ is for an attribute of type CHAR(10), it is padded

with five blank characters to become ‘Sudha ’ if needed. Padded blanks are generally

ignored when strings are compared

■ Bit-string data types are either of fixed length n—BIT(n)—or varying length—BIT

VARYING(n), where n is the maximum number of bits. The default for n, the length of a

character string or bit string, is 1. Literal bit strings are placed between single quotes but

preceded by a B to distinguish them from character strings; for example, B‘10101’.5

Another variable-length bitstring data type called BINARY LARGE OBJECT or BLOB is

also available

to specify columns that have large binary values, such as images. As for CLOB, the

maximum length of a BLOB can be specified in kilobits (K), megabits (M), or gigabits (G).

For example, BLOB(30G) specifies a maximum length of 30 gigabits.

■ A Boolean data type has the traditional values of TRUE or FALSE. In SQL, because of

the presence of NULL values, a three-valued logic is used, so a third possible value for a

Boolean data type is UNKNOWN.

■ The DATE data type has ten positions, and its components are YEAR, MONTH, and

DAY in the form YYYY-MM-DD. The TIME data type has at least eight positions, with

the components HOUR, MINUTE, and SECOND in the form HH:MM:SS. Only valid dates

and times should be allowed by the SQL implementation. This implies that months should

be between 1 and 12 and dates must be between 1 and 31; furthermore, a date should be a

valid date for the corresponding month. The < (less than) comparison can be used with

dates or times—an earlier date is considered to be smaller than a later date, and similarly

with time.

126

Some additional data types are discussed below. The list of types discussed here is not

exhaustive; different implementations have added more data types to SQL.

■ A timestamp data type (TIMESTAMP) includes the DATE and TIME fields, plus a

minimum of six positions for decimal fractions of seconds and an optional WITH TIME

ZONE qualifier. Literal values are represented by single quoted strings preceded by the

keyword TIMESTAMP, with a blank space between data and time; for example,

TIMESTAMP ‘2008-09-27 09:12:47.648302’.

■ Another data type related to DATE, TIME, and TIMESTAMP is the INTERVAL data

type. This specifies an interval—a relative value that can be used to increment or

decrement an absolute value of a date, time, or timestamp. Intervals are qualified to be

either YEAR/MONTH intervals or DAY/TIME intervals. The format of DATE, TIME, and

TIMESTAMP can be considered as a special type of string. Hence, they can generally be

used in string comparisons by being cast (or coerced or converted) into the equivalent

strings.

7.9 SQL LITERAL

Data Literal: A program source element that represents a data value. Data literals can be

divided into multiple groups depending upon the type of the data it is representing and how

it is representing.

1. Character String Literals are used to construct character strings, exact numbers,

approximate numbers and data and time values. The syntax rules of character string literals

are pretty simple:

 A character string literal is a sequence of characters enclosed by quote characters.

 The quote character is the single quote character "'".

 If "'" is part of the sequence, it needs to be doubled it as "''".

127

Examples of character string literals:

'Hello’

‘world!'

'Loews

'123'

2. Hex String Literals are used to construct character strings and exact numbers.

Hexadecimal literals consist of 0 to 62000 hexadecimal digits delimited by a matching pair

of single quotes, where a hexadecimal digit is a character from 0 to 9, a to f, or A to F. The

syntax rules for hex string literals are also very simple:

 A hex string literal is a sequence of hex digits enclosed by quote characters and

prefixed with "x".

 The quote character is the single quote character "'".

Examples of hex string literals:

x ‘41423534’

x ‘ 57664873’

3. Numeric Literals are used to construct exact numbers and approximate numbers. A

numeric literal is a string of 1 to 40 characters selected from the following:

• plus sign

• minus sign

• digits 0 through 9

• decimal point

Numeric literals are also referred to as numeric constants. Syntax rules of numeric literals

are:

 A numeric literal can be written in signed integer form, signed real numbers without

exponents, or real numbers with exponents.

128

Examples of numeric literals:

1

22.33

-345

4. Date and Time Literals are used to construct date and time values. The syntax of date

and time literals are:

 A date literal is written in the form of "DATE 'yyyy-mm-dd'".

 A time literal is written in the form of "TIMESTAMP 'yyyy-mm-dd hh:mm:ss'".

Examples of data and time literals:

DATE ‘2013-07-15’

TIMESTAMP ’2013-07-15 01:02:03’

7.10 SQL CONSTRAINTS

Constraints are the rules enforced on data columns on a table. These are used to limit the

type of data that can go into a table. This ensures the accuracy and reliability of the data in

the database. Constraints can either be column level or table level. Column level constraints

are applied only to one column whereas, table level constraints are applied to the entire

table.

Following are some of the most commonly used constraints available in SQL:

 NOT NULL Constraint: Ensures that a column cannot have a NULL value.

 DEFAULT Constraint: Provides a default value for a column when none is specified.

 UNIQUE Constraint: Ensures that all the values in a column are different.

 PRIMARY Key: Uniquely identifies each row/record in a database table.

129

 FOREIGN Key: Uniquely identifies a row/record in any another database table.

 CHECK Constraint: The CHECK constraint ensures that all values in a column satisfy

certain conditions.

 INDEX: Used to create and retrieve data from the database very quickly.

7.11 CHECK YOUR PROGRESS

1. A relation in a relational database is based on a relational schema, which consists

of number of ………………… .

2. …………………is a Relational Data Base Management System.

3. Rows of the relation are referred to as ………………… of the relation.

4. The relational model was designed by the IBM research scientist and

mathematician, Dr. …………………..

5. The ………………… is the only data structure used in the relational data model to

represent both entities and relationships between them.

6. Does the normal forms never removes anomalies?

7. Is each attribute of the column are drawn from the set of values known as domain?

8. Rename operator is represented by________.

9. The union operator comes under which type? Unary or binary.

10. Rename operator comes under which category? Unary or binary.

11. TRC stands for________?

12. SQL is a combination of a _________ language and a _________ language.

13. SQL stands for_________.

14. SQL was developed by ______ in the late 1970’s.

130

7.12 SUMMARY

A DBMS is a software used to store and manage data. The DBMS was introduced during

1960's to store any data. It also offers manipulation of the data like insertion, deletion, and

updating of the data. DBMS system also performs the functions like defining, creating,

revising and controlling the database. It is specially designed to create and maintain data

and enable the individual business application to extract the desired data.

Relational Database Management System (RDBMS) is an advanced version of a

DBMS system. It came into existence during 1970's. RDBMS system also allows the

organization to access data more efficiently then DBMS. RDBMS is a software system

which is used to store only data which need to be stored in the form of tables. In this kind

of system, data is managed and stored in rows and columns which is known as tuples and

attributes. RDBMS is a powerful data management system and is widely used across the

world. The goal of a relational database design is to generate a set of relation schema that

allows us to store information without unnecessary redundancy and also to retrieve

information easily. A database system is an integrated collection of related files, along with

details of interpretation of the data contained therein. DBMS is a software that allows

access to data contained in a database. The objective of the DBMS is to provide a

convenient and effective method of defining, storing and retrieving the information

contained in the database. The DBMS interfaces with application programs so that the data

contained in the database can be used by multiple applications and users. The DBMS allows

these users to access and manipulate the data contained in the database in a convenient and

effective manner. In addition the DBMS exerts centralized control of the database, prevents

unauthorized users from accessing the data and ensures privacy of data.

131

In Relational database model, a table is a collection of data elements organised in

terms of rows and columns. A table is also considered as a convenient representation of

relations. But a table can have duplicate row of data while a true relation cannot have

duplicate data. Table is the simplest form of data storage. All data stored in the tables are

provided by an RDBMS. Ensures that all data stored are in the form of rows and columns.

Facilitates primary key, which helps in unique identification of the rows. Index creation for

retrieving data at a higher speed. Facilitates a common column to be shared amid two or

more tables. Major components of RDBMS are Table, Record or Tuple, Field, Domain,

Instance, Schema, Keys. Relational database stores data in tables. Tables are organized into

columns, and each column stores one type of data (integer, real number, character strings,

date). The data for a single “instance” of a table is stored as a row. Many relational database

systems have an option of using the SQL (Structured Query Language) for querying and

maintaining the database.

In this chapter we presented two formal languages for the relational model of data.

They are used to manipulate relations and produce new relations as answers to queries. We

discussed the relational algebra and its operations, which are used to specify a sequence of

operations to specify a query. Then we introduced two types of relational calculi called

tuple calculus and domain calculus; they are declarative in that they specify the result of a

query without specifying how to produce the query result. The data for a single “instance”

of a table is stored as a row. Many relational database systems have an option of using the

SQL (Structured Query Language) for querying and maintaining the database.

Relational calculus is a non-procedural query language. It uses mathematical predicate

calculus instead of algebra. It provides the description about the query to get the result

whereas relational algebra gives the method to get the result. It informs the system what to

132

do with the relation, but does not inform how to perform it. For example, steps involved in

listing all the students who attend ‘Database’ Course in relational algebra would be

 SELECT the tuples from COURSE relation with COURSE_NAME =

‘DATABASE’

 PROJECT the COURSE_ID from above result

 SELECT the tuples from STUDENT relation with COUSE_ID resulted above.

Whereas, SQL (pronounced "ess-que-el") stands for Structured Query Language. SQL is

used to communicate with a database. According to ANSI (American National Standards

Institute), it is the standard language for relational database management systems. SQL

statements are used to perform tasks such as update data on a database, or retrieve data

from a database. Some common relational database management systems that use SQL are:

Oracle, Sybase, Microsoft SQL Server, Access, Ingres, etc. Although most database

systems use SQL, most of them also have their own additional proprietary extensions that

are usually only used on their system. However, the standard SQL commands such as

"Select", "Insert", "Update", "Delete", "Create", and "Drop" can be used to accomplish

almost everything that one needs to do with a database. This tutorial will provide you with

the instruction on the basics of each of these commands as well as allow you to put them

to practice using the SQL Interpreter.

7.13 KEYWORDS

 Domain- A domain describes the set of possible values for a given attribute, and

can be considered a constraint on the value of the attribute. Mathematically,

attaching a domain to an attribute means that any value for the attribute must be an

133

element of the specified set. The character string "ABC", for instance, is not in the

integer domain, but the integer value 123 is.

 Constraints- Constraints make it possible to further restrict the domain of an

attribute. For instance, a constraint can restrict a given integer attribute to values

between 1 and 10.

 Tuple- A data set representing a single item.

 Column- A labeled element of a tuple, e.g. "Address" or "Date of birth"

 Table- A set of tuples sharing the same attributes; a set of columns and rows

 View- Any set of tuples; a data report from the RDBMS in response to a query

7.14 SELF-ASSESSMENT TEST

1. Explain the following terms

i) Domain

ii) Tuple

iii) Relation

iv) Attribute

2. Explain difference between DBMS and RDBMS.

3. Why relational data model is so popular?

4. What are record based models?

5. How RDBMS stores its data?

6. Explain the role of relational algebra in relational database.

7. What are the different type of relational algebra? Discuss in detail

8. List the data types that are allowed for SQL attributes.

9. How does SQL allow implementation of the entity integrity and referential integrity

constraints described in Chapter 3? What about referential triggered actions?

134

10. How do the relations (tables) in SQL differ from the relations defined formally in

relation algebra? Discuss the other differences in terminology. Why does SQL

allow duplicate tuples in a table or in a query result?

7.15 ANSWERS TO CHECK YOUR PROGRESS

1. Attributes

2. RDBMS

3. Tuples

4. E.F Codd

5. Relation

6. False

7. True

8. ρ

9. Binary

10. Unary

11. Tuple Relational Calculus

12. Data manipulation

13. Structured Query language

14. IBM

7.16 REFERENCES / SUGGESTED READINGS

 C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N.

Delhi.

 Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB

Publication 3rd edition.

135

 Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson

Education.

 https://www.geeksforgeeks.org/difference-between-rdbms-and-dbms/

 https://en.wikipedia.org/wiki/Relational_database

 https://www.javatpoint.com/what-is-rdbms

 https://searchdatamanagement.techtarget.com/definition/RDBMS-relational-

database-management-system

https://www.geeksforgeeks.org/difference-between-rdbms-and-dbms/
https://en.wikipedia.org/wiki/Relational_database
https://www.javatpoint.com/what-is-rdbms
https://searchdatamanagement.techtarget.com/definition/RDBMS-relational-database-management-system
https://searchdatamanagement.techtarget.com/definition/RDBMS-relational-database-management-system

136

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: MCA-11 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 8 VETTER:

RELATIONAL DATABASE DESIGN

STRUCTURE

8.0 Learning Objective

8.1 Introduction

8.2 Definition

8.3 Purpose of Functional Dependency

8.4 Data Redundancy in Functional Dependency

8.5 Update Anomalies

8.6 Check Your Progress

8.7 Summary

8.8 Keywords

8.9 Self-Assessment Test

8.10 Answers to check your progress

8.11 References / Suggested Readings

137

8.0 LEARNING OBJECTIVE

 To understand the concepts of Functional Dependency, Normalization.

 To learn the purpose of functional dependency.

 To discuss and Update the anomalies in functional dependency.

 To understand the data redundancy in Functional Dependency.

8.1 INTRODUCTION

Each relation schema consists of a number of attributes, and the relational database schema

consists of a number of relation schemas. So far, we have assumed that attributes are

grouped to form a relation schema by using the common sense of the database designer or

by mapping a database schema design from a conceptual data model such as the ER or

enhanced ER (EER) or some other conceptual data model. These models make the designer

identify entity types and relationship types and their respective attributes, which leads to a

natural and logical grouping of the attributes into relations when the mapping procedures.

We have not developed any measure of appropriateness or "goodness" to measure the

quality of the design, other than the intuition of the designer. In this chapter we discuss

some of the theory that has been developed with the goal of evaluating relational schemas

for design quality-that is, to measure formally why one set of groupings of attributes into

relation schemas is better than another.

There are two levels at which we can discuss the "goodness" of relation schemas.

The first is the logical (or conceptual) level-how users interpret the relation schemas and

the meaning of their attributes. Having good relation schemas at this level enables users to

understand clearly the meaning of the data in the relations, and hence to formulate their

queries correctly. The second is the implementation (or storage) level-how the tuples in a

138

base relation are stored and updated. This level applies only to schemas of base relations-

which will be physically stored as files-whereas at the logical level we are interested in

schemas of both base relations and views (virtual relations). The relational database design

theory developed in this chapter applies mainly to base relations, although some criteria of

appropriateness also apply to views. As with many design problems, database design may

be performed using two approaches: bottom-up or top-down. A bottom-up design

methodology (also called design by synthesis) considers the basic relationships among

individual attributes as the starting point and uses those to construct relation schemas. This

approach is not very popular in practice. Because it suffers from the problem of having to

collect a large number of binary relationships among attributes as the starting point. In

contrast, a top-down design methodology (also called design by analysis) starts with a

number of groupings of attributes into relations that exist together naturally, for example,

on an invoice, a form, or a report. The relations are then analysed individually and

collectively, leading to further decomposition until all desirable properties are met. The

theory described in this chapter is applicable to both the top-down and bottom-up design

approaches, but is more practical when used with the top-down approach. We define the

concept of functional dependency, a formal constraint among attributes that is the main tool

for formally measuring the appropriateness of attribute groupings into relation schemas.

Properties of functional dependencies are also studied and analysed. Then properties of

functional dependencies are also studied and analysed. Then we will discuss the how

functional dependencies can be used to group attributes into relation schemas that are in a

normal form. A relation schema is in a normal form when it satisfies certain desirable

properties. The process of normalization consists of analysing relations to meet

increasingly more stringent normal forms leading to progressively better groupings of

139

attributes. Normal forms are specified in terms of functional dependencies-which are

identified by the database designer-and key attributes of relation schemas.

When developing the schema of a relational database, one of the most important

aspects to be taken into account is to ensure that the duplication is minimized. This is done

for 2 purposes:

 Reducing the amount of storage needed to store the data.

 Avoiding unnecessary data conflicts that may creep in because of multiple copies

of the same data getting stored.

8.2 DEFINITION

Functional Dependency: A functional dependency is a constraint between two sets of

attributes from the database. Suppose that our relational database schema has n attributes

AI, A2, ……, An; let us think of the whole database as being described by a single universal

relation schema R = {A1, A2, A3…….., An). 6We do not imply that we will actually store

the database as a single universal table; we use this concept only in developing the formal

theory of data dependencies

Definition: A functional dependency is a constraint between two sets of attributes from the

database. Suppose that our relational database schema has n attributes A1, A2, ..., An. If

we think of the whole database as being described by a single universal relation schema R

= {A1, A2, ... , An}. A functional dependency (FD) is a relationship between two attributes,

typically between the PK and other non-key attributes within a table. For any relation R,

attribute Y is functionally dependent on attribute X (usually the PK), if for every valid

instance of X, that value of X uniquely determines the value of Y.

140

It determines the relation of one attribute to another attribute in a database management

system (DBMS) system. Functional dependency helps you to maintain the quality of data

in the database. A functional dependency is denoted by an arrow →. The functional

dependency of X on Y is represented by X → Y. Functional Dependency plays a vital role

to find the difference between good and bad database design.

Example:

Employee number Employee Name Salary City

1 Dana 50000 San Francisco

2 Francis 38000 London

3 Andrew 25000 Tokyo

In this example, if we know the value of Employee number, we can obtain Employee Name,

city, salary, etc. By this, we can say that the city, Employee Name, and salary are

functionally depended on Employee number.

Definition of Normalization:

Database Normalization is a technique of organizing the data in the database.

Normalization is a systematic approach of decomposing tables to eliminate data

redundancy (repetition) and undesirable characteristics like Insertion, Update and Deletion

Anomalies. It is a multi-step process that puts data into tabular form, removing duplicated

data from the relation tables.

141

Normalization is used for mainly two purposes,

 Eliminating redundant (useless) data.

 Ensuring data dependencies make sense i.e. data is logically stored.

8.3 PURPOSE OF FUNCTIONAL DEPENDANCY

A functional dependency, denoted by X Y, between two sets of attributes X and Y that

are subsets of R, such that any two tuples t1 and t2 in r that have t1[X] = t2[X], they must

also have t1[Y] = t2[Y].

This means that the values of the Y component of a tuple in r depend on, or are determined

by, the values of the X component; we say that the values of the X component of a tuple

uniquely (or functionally) determine the values of the Y component. We say that there is a

functional dependency from X to Y, or that Y is functionally dependent on X.

Functional dependency is represented as FD or f.d. The set of attributes X is called the left-

hand side of the FD, and Y is called the right-hand side.

X functionally determines Y in a relation schema R if, and only if, whenever two tuples of

r(R) agree on their X-value, they must necessarily agree on their Y-value. If a constraint on

R states that there cannot be more than one tuple with a given X-value in any relation

instance r(R)—that is, X is a candidate key of R— this implies that X Y for any subset

of attributes Y of R.

If X is a candidate key of R, then XR.



If XY in R, this does not imply that YX in R.

142

A functional dependency is a property of the semantics or meaning of the attributes.

Whenever the semantics of two sets of attributes in R indicate that a functional dependency

should hold, we specify the dependency as a constraint.

Legal Relation States:

Relation extensions r(R) that satisfy the functional dependency constraints are called legal

relation states (or legal extensions) of R. Functional dependencies are used to describe

further a relation schema R by specifying constraints on its attributes that must hold at all

times. Certain FDs can be specified without referring to a specific relation, but as a property

of those attributes given their commonly understood meaning.

For example, {State, Driver_license_number} Ssn should hold for any adult in the

United States and hence should hold whenever these attributes appear in a relation.

Consider the relation schema EMP_PROJ from the semantics of the attributes and the

relation, we know that the following functional dependencies should hold:

a. SsnEname

b. Pnumber {Pname, Plocation}

c. {Ssn, Pnumber}Hours

A functional dependency is a property of the relation schema R, not of a particular legal

relation state r of R. Therefore, an FD cannot be inferred automatically from a given relation

extension r but must be defined explicitly by someone who knows the semantics of the

attributes of R.

Example 1: For the relation Student(studentID, name, DateOfBirth, phoneNumber),

assuming

143

each student has only one name, then the following functional dependency holds

{studentID} {name, DateOfBirth}

However, assuming a student may have multiple phone numbers, then the FD

{studentID} {phoneNumber}

does not hold for the table.

By convention, we often omit the curly braces { } for the set, and write the first functional

dependency in Example 1 as

studentIDname, DateOfBirth.

Note that the above FD can also be written equivalently into the two FDs below:

studentID name

studentIDDateOfBirth

8.4 DATA REDUNDANCY IN FUNCTIONAL DEPENDENCY

Data redundancy is a condition created within a database or data storage technology in

which the same piece of data is held in two separate places. This can mean two different

fields within a single database, or two different spots in multiple software environments or

platforms. Data redundancy occurs when the same piece of data is stored in two or more

separate places and is a common occurrence in many businesses. As more companies are

moving away from siloed data to using a central repository to store information, they are

finding that their database is filled with inconsistent duplicates of the same entry. Although

it can be challenging to reconcile — or even benefit from — duplicate data entries,

understanding how to reduce and track data redundancy efficiently can help mitigate long-

term inconsistency issues for your business.

144

Sometimes data redundancy happens by accident while other times it is intentional.

Accidental data redundancy can be the result of a complex process or inefficient coding

while intentional data redundancy can be used to protect data and ensure consistency —

simply by leveraging the multiple occurrences of data for disaster recovery and quality

checks. If data redundancy is intentional, it’s important to have a central field or space for

the data. This allows you to easily update all records of redundant data when necessary.

Four major advantages of Data Redundancy:

Although data redundancy sounds like a negative event, there are many organizations that

can benefit from this process when it’s intentionally built into daily operations.

1. Alternative data backup method

Backing up data involves creating compressed and encrypted versions of data and storing

it in a computer system or the cloud. Data redundancy offers an extra layer of protection

and reinforces the backup by replicating data to an additional system. It’s often an

advantage when companies incorporate data redundancy into their disaster recovery plans.

2. Better data security

Data security relates to protecting data, in a database or a file storage system, from

unwanted activities such as cyberattacks or data breaches. Having the same data stored in

two or more separate places can protect an organization in the event of a cyberattack or

breach — an event which can result in lost time and money, as well as a damaged

reputation.

3. Faster data access and updates

When data is redundant, employees enjoy fast access and quick updates because the

necessary information is available on multiple systems. This is particularly important for

customer service-based organizations whose customers expect promptness and efficiency.

4. Improved data reliability

145

Data that is reliable is complete and accurate. Organizations can use data redundancy to

double check data and confirm it’s correct and completed in full — a necessity when

interacting with customers, vendors, internal staff, and others.

Although there are noteworthy advantages of intentional data redundancy, there are also

several significant drawbacks when organizations are unaware of its presence.

Possible data inconsistency

Data redundancy occurs when the same piece of data exists in multiple places, whereas

data inconsistency is when the same data exists in different formats in multiple tables.

Unfortunately, data redundancy can cause data inconsistency, which can provide a

company with unreliable and/or meaningless information.

Increase in data corruption

Data corruption is when data becomes damaged as a result of errors in writing, reading,

storage, or processing. When the same data fields are repeated in a database or file storage

system, data corruption arises. If a file gets corrupted, for example, and an employee tries

to open it, they may get an error message and not be able to complete their task.

Increase in database size

Data redundancy may increase the size and complexity of a database — making it more of

a challenge to maintain. A larger database can also lead to longer load times and a great

deal of headaches and frustrations for employees as they’ll need to spend more time

completing daily tasks.

Increase in cost

When more data is created due to data redundancy, storage costs suddenly increase. This

can be a serious issue for organizations who are trying to keep costs low in order to increase

146

profits and meet their goals. In addition, implementing a database system can become more

expensive.

There are four informal measures of quality for relation schema design.

 Semantics of the attributes.

 Reducing the redundant values in tuples.

 Reducing the null values in tuples.

 Disallowing the possibility of generating spurious tuples.

Semantics of the Relation Attributes- The easier it is to explain the semantics of the

relation, the better the relation schema design will be.

GUIDELINE 1: Design a relation schema so that it is easy to explain its meaning. Do not

combine attributes from multiple entity types and relationship types into a single relation.

Intuitively, if a relation schema corresponds to one entity type or one relationship type, the

meaning tends to be clear. Otherwise, the relation corresponds to a mixture of multiple

entities and relationships and hence becomes semantically unclear.

Example: A relation involves two entities- poor design.

EMP DEPT

ENAME SSN BDATE ADDREESS DNUMBER DNAME DMGRSSN

8.5 UPDATE ANOMALIES

Consider the two relation schemas EMP_LOCS and EMP_PROJl in Figure 8.1 a, A tuple

in EMP_LOCS means that the employee whose name is ENAME works on some project

whose location is PLOCATION.

147

Figure 8.1 (a): The two relation schemas EMP_LOCS and EMP_PROJ1

148

Figure 8.1 (b) The result of projecting the extension of EMP_PROJ form Figure 8.1(a) on

the relations EMP_LOCS and EMP_PROJ1

Update anomalies for base relations EMP DEPT and EMP PROJ in Figure 8.1

 Insertion anomalies: For EMP DEPT relation in Figure 8.1

 To insert a new employee tuple, we need to make sure that the values of

attributes DNUMBER, DNAME, and DMGRSSN are consistent to other

employees (tuples) in EMP DEPT.

 It is difficult to insert a new department that has no employees as yet in the EMP

DEPT relation.

 Deletion anomalies: If we delete from EMP DEPT an employee tuple that happens

to represent the last employee working for a particular department, the information

concerning that department is lost from the database.

 Modification anomalies: If we update the value of MGRSSN in a particular

department, we must to update the tuples of all employees who work in that

department; otherwise, the database will become inconsistent.

GUIDELINE 2: Design the base relation schemas so that no insertion, deletion, or

Modification anomalies are present in the relations. If any anomalies are present, note them

clearly and make sure the programs that update the database will operate correctly. It is

advisable to use anomaly-free base relations and to specify views that include the JOINs

for placing together the attributes frequently referenced to improve the performance.

8.6 CHECK YOUR PROGRESS

1. We can use the following three rules to find logically implied functional

dependencies. This collection of rules is called

149

a) Axioms

b) Armstrong’s axioms

c) Armstrong

d) Closure

2. Which of the following is not Armstrong’s Axiom?

a) Reflexivity rule

b) Transitivity rule

c) Pseudo transitivity rule

d) Augmentation rule

3. The relation employee(ID,name,street,Credit,street,city,salary) is decomposed into

employee1 (ID, name)

employee2 (name, street, city, salary)

 This type of decomposition is called

a) Lossless decomposition

b) Lossless-join decomposition

c) All of the mentioned

d) None of the mentioned

4. Inst_dept (ID, name, salary, dept name, building, budget) is decomposed into

instructor (ID, name, dept name, salary)

department (dept name, building, budget)

This comes under

a) Lossy-join decomposition

b) Lossy decomposition

c) Lossless-join decomposition

d) Both Lossy and Lossy-join decomposition

5. Suppose relation R(A,B,C,D,E) has the following functional dependencies:

150

A -> B

B -> C

BC -> A

A -> D

E -> A

D -> E

Which of the following is not a key?

a) A

b) E

c) B, C

d) D

8.7 SUMMARY

Functional dependency (FD) is a set of constraints between two attributes in a relation.

Functional dependency says that if two tuples have same values for attributes A1, A2,...,

An, then those two tuples must have to have same values for attributes B1, B2, ..., Bn.

Functional dependency is represented by an arrow sign (→) that is, X→Y, where X

functionally determines Y. The left-hand side attributes determine the values of attributes

on the right-hand side. Database normalization is the process of efficiently organizing data

in a database so that redundant data is eliminated. This process can ensure that all of a

company’s data looks and reads similarly across all records. By implementing data

normalization, an organization standardizes data fields such as customer names, addresses,

and phone numbers. Normalizing data involves organizing the columns and tables of a

database to make sure their dependencies are enforced correctly. The “normal form” refers

to the set of rules or normalizing data, and a database is known as “normalized” if it’s free

of delete, update, and insert anomalies. When it comes to normalizing data, each company

151

has their own unique set of criteria. Therefore, what one organization believes to be

“normal,” may not be “normal” for another organization. For instance, one company may

want to normalize the state or province field with two digits, while another may prefer the

full name. Regardless, database normalization can be the key to reducing data redundancy

across any company.

Efficient data redundancy is possible. Many organizations like home improvement

companies, real estate agencies, and companies focused on customer interactions have

customer relationship management (CRM) systems. When a CRM system is integrated

with another business software like an accounting software that combines customer and

financial data, redundant manual data is eliminated, leading to more insightful reports and

improved customer service. Database management systems are also used in a variety of

organizations. They receive direction from a database administrator (DBA) and allow the

system to load, retrieve, or change existing data from the systems. Database management

systems adhere to the rules of normalization, which reduces data redundancy. Hospitals,

nursing homes, and other healthcare entities use database management systems to generate

reports that provide useful information for physicians and other employees. When data

redundancy is efficient and does not lead to data inconsistency, these systems can alert

healthcare providers of rises in denial claim rates, how successful a certain medication is,

and other important pieces of information.

8.8 KEYWORDS

 AXIOM - Axioms is a set of inference rules used to infer all the functional

dependencies on a relational database.

152

 DECOMPOSITION- It is a rule that suggests if you have a table that appears to

contain two entities which are determined by the same primary key then you should

consider breaking them up into two different tables.

 DEPENDENT - It is displayed on the right side of the functional dependency

diagram.

 UNION - It suggests that if two tables are separate, and the PK is the same, you

should consider putting them. Together.

 DETERMINANT - It is displayed on the left side of the functional dependency

Diagram.

5.9 SELF-ASSESSMENT TEST

1. Explain the Functional Dependency in detail.

2. Discuss how to Insert and Update anomaly in functional dependency.

3. What is the key role of Normalization?

4. How normalization and functional dependency are related to each other?

5. Discuss with example the redundancy in functional dependency.

8.10 ANSWERS TO CHECK YOUR PROGRESS

1. B

2. C

3. D

4. D

5. C

153

8.11 REFERENCES / SUGGESTED READINGS

 C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N.

Delhi.

 Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB

Publication 3rd edition.

 Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson

Education.

 https://opentextbc.ca/dbdesign01/chapter/chapter-11-functional-dependencies/

 https://hackr.io/blog/dbms-normalization

 https://www.guru99.com/database-normalization.html

 https://www.javatpoint.com/dbms-normalization

https://opentextbc.ca/dbdesign01/chapter/chapter-11-functional-dependencies/
https://hackr.io/blog/dbms-normalization
https://www.guru99.com/database-normalization.html
https://www.javatpoint.com/dbms-normalization

154

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: MCA-11 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 9 VETTER:

NORMAL FORMS

STRUCTURE

9.0 Learning Objective

9.1 Introduction

9.2 Definition of Normalization

9.3 Decomposition

9.4 First Normal Form (1NF)

9.5 Second Normal Form (2NF)

9.6 Third Normal Form (3NF)

9.7 Boyce-Codd normal form (BCNF)

9.8 Check Your Progress

9.9 Summary

9.10 Keywords

9.11 Self-Assessment Test

9.12 Answers to check your progress

9.13 References / Suggested Readings

155

9.0 LEARNING OBJECTIVE

 To understand the concepts of Anomalies in Database

 Learn how to update, insert and Delete anomalies

 To understand the concept of Normalization in removing anomalies in

database

 Study and learn decomposition methods and different forms of Normalization

9.1 INTRODUCTION

NORMALIZATION is a database design technique that reduces data redundancy and

eliminates undesirable characteristics like Insertion, Update and Deletion Anomalies.

Normalization rules divides larger tables into smaller tables and links them using

relationships. The purpose of Normalization in SQL is to eliminate redundant (repetitive)

data and ensure data is stored logically. The inventor of the relational model Edgar Codd

proposed the theory of normalization with the introduction of the First Normal Form, and

he continued to extend theory with Second and Third Normal Form. Later he joined

Raymond F. Boyce to develop the theory of Boyce-Codd Normal Form.

There are three types of anomalies that occur when the database is not normalized. These

are – Insertion, update and deletion anomaly. Let’s take an example to understand this.

Example: Suppose a manufacturing company stores the employee details in a table named

employee that has four attributes: emp_id for storing employee’s id, emp_name for storing

employee’s name, emp_address for storing employee’s address and emp_dept for storing

the department details in which the employee works. At some point of time the table looks

like this in table 9.1:

156

emp_id emp_name emp_address emp_dept

101 Rick Delhi D001

101 Rick Delhi D002

123 Maggie Agra D890

166 Glenn Chennai D900

166 Glenn Chennai D004

Table 9.1: Un-Normalized Data in a table

Update anomaly: In the above table we have two rows for employee Rick as he belongs

to two departments of the company. If we want to update the address of Rick then we have

to update the same in two rows or the data will become inconsistent. If somehow, the correct

address gets updated in one department but not in other then as per the database, Rick would

be having two different addresses, which is not correct and would lead to inconsistent data.

Insert anomaly: Suppose a new employee joins the company, who is under training and

currently not assigned to any department then we would not be able to insert the data into

the table if emp_dept field doesn’t allow nulls.

157

Delete anomaly: Suppose, if at a point of time the company closes the department D890

then deleting the rows that are having emp_dept as D890 would also delete the information

of employee Maggie since she is assigned only to this department.

To overcome these anomalies we need to normalize the data.

9.2 DEFINTION OF NORMALIZATION

Database Normalization is a technique that helps in designing the schema of the database

in an optimal manner so as to ensure the above points. The core idea of database

normalization is to divide the tables into smaller sub tables and store pointers to data rather

than replicating it. For a better understanding of what we just said, here is a simple DBMS

Normalization example:

To understand (RDBMS) normalization in the database with example tables, let's assume

that we are supposed to store the details of courses and instructors in a university. Here is

what a sample database could look like:

Course code Course venue Instructor Name Instructor’s phone number

CS101 Lecture Hall 20 Prof. George +91 6514821924

CS152 Lecture Hall 21 Prof. Atkins +91 6519272918

CS154 CS Auditorium Prof. George +91 6514821924

Here, the data basically stores the course code, course venue, instructor name, and

instructor’s phone number. At first, this design seems to be good. However, issues start to

develop once we need to modify information. For instance, suppose, if Prof. George

changed his mobile number. In such a situation, we will have to make edits in 2 places.

158

What if someone just edited the mobile number against CS101, but forgot to edit it for

CS154? This will lead to stale/wrong information in the database.

This problem, however, can be easily tackled by dividing our table into 2 simpler tables:

Table 1 (Instructor):

1. Instructor ID

2. Instructor Name

3. Instructor mobile number

Table 2 (Course):

 Course code

 Course venue

 Instructor ID

Now, our data will look like the following:

Table 1 (Instructor):

Insturctor's ID Instructor's name Instructor's number

1 Prof. George +1 6514821924

2 Prof. Atkins +1 6519272918

Table 2 (Course):

Course code Course venue Instructor ID

CS101 Lecture Hall 20 1

159

CS152 Lecture Hall 21 2

CS154 CS Auditorium 1

Basically, we store the instructors separately and in the course table, we do not store the

entire data of the instructor. We rather store the ID of the instructor. Now, if someone wants

to know the mobile number of the instructor, he/she can simply look up the instructor table.

Also, if we were to change the mobile number of Prof. George, it can be done in exactly

one place. This avoids the stale/wrong data problem.

Further, if you observe, the mobile number now need not be stored 2 times. We

have stored it at just 1 place. This also saves storage. This may not be obvious in the above

simple example. However, think about the case when there are hundreds of courses and

instructors and for each instructor, we have to store not just the mobile number, but also

other details like office address, email address, specialization, availability, etc. In such a

situation, replicating so much data will increase the storage requirement unnecessarily. The

above is a simplified example of how database normalization works. We will now more

formally study it.

 Normalization is the process of organizing the data in the database.

 Normalization is used to minimize the redundancy from a relation or set of

relations. It is also used to eliminate the undesirable characteristics like

Insertion, Update and Deletion Anomalies.

 Normalization divides the larger table into the smaller table and links them

using relationship.

 The normal form is used to reduce redundancy from the database table.

160

Normalization rules are divided into the following normal forms:

1. First Normal Form

2. Second Normal Form

3. Third Normal Form

4. BCNF

5. Fourth Normal Form

9.3 DECOMPOSITION

Definition. The normal form of a relation refers to the highest normal form condition that

it meets, and hence indicates the degree to which it has been normalized. Normal forms,

when considered in isolation from other factors, do not guarantee a good database design.

It is generally not sufficient to check separately that each relation schema in the database

is, say, in BCNF or 3NF. Rather, the process of normalization through decomposition must

also confirm the existence of additional properties that the relational schemas, taken

together, should possess. These would include two properties:

 The non-additive join or lossless join property, which guarantees that the

spurious tuple generation problem does not occur with respect to the relation

schemas created after decomposition.

 The dependency preservation property, which ensures that each functional

dependency is represented in some individual relation resulting after

decomposition.

In fact Normalization is carried out in practice so that the resulting designs are of high

quality and meet the desirable properties stated previously. The practical utility of these

normal forms becomes questionable when the constraints on which they are based are rare,

161

and hard to understand or to detect by the database designers and users who must discover

these constraints. Thus, database design as practiced in industry today pays particular

attention to normalization only up to 3NF, BCNF, or at most 4NF. Another point worth

noting is that the database designers need not normalize to the highest possible normal

form. Relations may be left in a lower normalization status, such as 2NF.

9.4 FIRST NORMAL FORM (1NF)

First normal form (1NF) is now considered to be part of the formal definition of a relation

in the basic (flat) relational model; historically, it was defined to disallow multivalued

attributes, composite attributes, and their combinations. It states that the domain of an

attribute must include only atomic (simple, indivisible) values and that the value of any

attribute in a tuple must be a single value from the domain of that attribute. Hence, 1NF

disallows having a set of values, a tuple of values, or a combination of both as an attribute

value for a single tuple. In other words, 1NF disallows relations within relations or

relations as attribute values within tuples. The only attribute values permitted by 1NF are

single atomic (or indivisible) values.

Consider the DEPARTMENT relation schema shown in Figure below, whose primary key

is Dnumber, and suppose that we extend it by including the Dlocations attribute as shown

in Figure. We assume that each department can have a number of locations.. As we can see,

this is not in 1NF because Dlocations is not an atomic attribute.

DEPARTMENT

 There are three main techniques to achieve first normal form for such a relation:

Dnumber Dname Dmgr_SSN DLocation

162

 Remove the attribute Dlocations that violates 1NF and place it in a separate relation

DEPT_LOCATIONS along with the primary key Dnumber of DEPARTMENT.

The primary key of this relation is the combination {Dnumber, Dlocation},

 Expand the key so that there will be a separate tuple in the original DEPARTMENT

 relation for each location of a DEPARTMENT,

 If a maximum number of values is known for the attribute—for example, if it is

known that at most three locations can exist for a department—replace the

Dlocations attribute by three atomic attributes: Dlocation1, Dlocation2, and

Dlocation3. This solution has the disadvantage of introducing NULL values if most

departments have fewer than three locations.

Of the three solutions above, the first is generally considered best because it does not suffer

from redundancy and it is completely general, having no limit placed on a maximum

number of values.

Example:

The First normal form simply says that each cell of a table should contain exactly one value.

Let us take an example. Suppose we are storing the courses that a particular instructor takes,

we can store it like this:

Instructor's name Course code

Prof. George (CS101, CS154)

Prof. Atkins (CS152)

Here, the issue is that in the first row, we are storing 2 courses against Prof. George. This

isn’t the optimal way since that’s now how SQL databases are designed to be used. A better

method would be to store the courses separately. For instance:

163

Instructor's name Course code

Prof. George CS101

Prof. George CS154

Prof. Atkins CS152

This way, if we want to edit some information related to CS101, we do not have to touch

the data corresponding to CS154. Also, observe that each row stores unique information.

There is no repetition. This is the First Normal Form.

9.5 Second Normal Form (2NF)

Second normal form (2NF) is based on the concept of full functional dependency. A

functional dependency X → Y is a full functional dependency if removal of any attribute

A from X means that the dependency does not hold any more; that is, for any attribute A ε

X, (X – {A}) does not functionally determine Y. A functional dependency X→Y is a partial

dependency if some attribute A ε X can be removed from X and the dependency still holds;

that is, for some A ε X, (X – {A}) → Y.

Definition. A relation schema R is in 2NF if every nonprime attribute A in R is fully

functionally dependent on the primary key of R. The test for 2NF involves testing for

functional dependencies whose left-hand side attributes are part of the primary key. If the

primary key contains a single attribute, the test need not be applied at all.

General Definition of 2NF

A relation schema R is in second normal form (2NF) if every nonprime attribute A in R is

not partially dependent on any key of R.

164

If a relation schema is not in 2NF, it can be second normalized or 2NF normalized into a

number of 2NF relations in which nonprime attributes are associated only with the part of

the primary key on which they are fully functionally dependent. The following example

shows how we can decompose a relation not in 2NF into three relations which are now in

2NF. For a table to be in second normal form, the following 2 conditions are to be met:

1. The table should be in the first normal form.

2. The primary key of the table should compose of exactly 1 column.

The first point is obviously straightforward since we just studied 1NF. Let us understand

the first point - 1 column primary key. Well, a primary key is a set of columns that uniquely

identifies a row. Basically, no 2 rows have the same primary keys.

(a) Relation not in 2NF

FD1

FD2

 FD3

(b) Relation decomposed in 2NF

FD1 FD2 FD3

SSN Pnumber Hours Ename Pname PLocation

SSN Pnumber Hours SSN Ename Pnumber Pname PLocation

165

Example:

Course

code

Course venue Instructor

Name

Instructor’s phone

number

CS101 Lecture Hall

20

Prof. George +91 6514821924

CS152 Lecture Hall

21

Prof. Atkins +91 6519272918

CS154 CS Auditorium Prof. George +91 6514821924

Here, in this table, the course code is unique. So, that becomes our primary key. Let us take

another example of storing student enrollment in various courses. Each student may enroll

in multiple courses. Similarly, each course may have multiple enrollments. A sample table

may look like this (student name and course code):

Student name Course code

Rahul

CS152

Rajat CS101

Rahul CS154

Raman CS101

Here, the first column is the student name and the second column is the course taken by the

student. Clearly, the student name column isn’t unique as we can see that there are 2 entries

166

corresponding to the name ‘Rahul’ in row 1 and row 3. Similarly, the course code column

is not unique as we can see that there are 2 entries corresponding to course code CS101 in

row 2 and row 4. However, the tuple (student name, course code) is unique since a student

cannot enroll in the same course more than once. So, these 2 columns when combined form

the primary key for the database. As per the second normal form definition, our enrollment

table above isn’t in the second normal form. To achieve the same (1NF to 2NF), we can

rather break it into 2 tables:

Students:

Student name Enrolment number

Rahul 1

Rajat 2

Raman 3

Here the second column is unique and it indicates the enrollment number for the student.

Clearly, the enrollment number is unique. Now, we can attach each of these enrollment

numbers with course codes.

Courses:

Course code Enrolment number

CS101 2

CS101 3

CS152 1

CS154 1

167

These 2 tables together provide us with the exact same information as our original table.

9.6 Third Normal Form (3NF)

Third normal form (3NF) is based on the concept of transitive dependency. A functional

dependency X→Y in a relation schema R is a transitive dependency if there exists a set of

attributes Z in R that is neither a candidate key nor a subset of any key of R, and both X→Z

and Z→Y hold.

Definition. According to Codd’s original definition, a relation schema R is in 3NF if it

satisfies 2NF and no nonprime attribute of R is transitively dependent on the primary key.

 The relation schema EMP_DEPT in Figure (a) below is in 2NF, since no partial

dependencies

on a key exist. However, EMP_DEPT is not in 3NF because of the transitive dependency

of Dmgr_Adhar_No. (and also Dname) on Adhar_No. via Dnumber. We can normalize

EMP_DEPT by decomposing it into the two 3NF relation schemas shown in Figure (b).

Intuitively, we see that the two relations represent independent entity facts about employees

and departments :

(a)

FD1

 FD2

(b)

FD1 FD2

Ename Adhar_no BDate Address Dnumber Dname Dmgr_Adhar_no

Ename Adhar_no Bdate Address Dnumber Dnumber Dname Dmgr_Adhar_no

168

General Definition

Definition. A relation schema R is in third normal form (3NF) if, whenever a nontrivial

functional dependency X→A holds in R, either (a) X is a superkey of R, or (b) A is a prime

attribute of R. A relation schema R violates the general definition of 3NF if a functional

dependency X → A holds in R that does not meet either condition—meaning that it violates

both conditions (a) and (b) of 3NF. This can occur due to two types of problematic

functional dependencies:

■ A nonprime attribute determines another nonprime attribute. Here we typically have a

transitive dependency that violates 3NF.

■ A proper subset of a key of R functionally determines a nonprime attribute.

Here we have a partial dependency that violates 3NF (and also 2NF). Therefore, we can

state a general alternative definition of 3NF as follows:

Alternative Definition. A relation schema R is in 3NF if every nonprime attribute of R

meets both of the following conditions:

■ It is fully functionally dependent on every key of R.

■ It is nontransitively dependent on every key of R.

Example:

 Before we delve into details of third normal form, let us again understand the

concept of a functional dependency on a table. Column A is said to be functionally

dependent on column B if changing the value of A may require a change in the

value of B. As an example, consider the following table:

169

Course

code

Course venue Instructor's

name

Department

MA214 Lecture Hall 18 Prof. George CS Department

ME112 Auditorium

building

Prof. John Electronics

Department

Here, the department column is dependent on the professor name column. This is because

if in a particular row, we change the name of the professor, we will also have to change the

department value. As an example, suppose MA214 is now taken by Prof. Ronald who

happens to be from the Mathematics department, the table will look like this:

Course

code

Course venue Instructor's

name

Department

MA214 Lecture Hall 18 Prof. Ronald Mathematics

Department

ME112 Auditorium

building

Prof. John Electronics Department

Here, when we changed the name of the professor, we also had to change the department

column. This is not desirable since someone who is updating the database may remember

to change the name of the professor, but may forget updating the department value. This

can cause inconsistency in the database.

Third normal form avoids this by breaking this into separate tables:

170

Course code Course venue Instructor's ID

MA214 Lecture Hall 18 1

ME112 Auditorium building, 2

Here, the third column is the ID of the professor who’s taking the course.

Instructor's ID Instructor's Name Department

1 Prof. Ronald Mathematics Department

2 Prof. John Electronics Department

Here, in the above table, we store the details of the professor against his/her ID. This way,

whenever we want to reference the professor somewhere, we don’t have to put the other

details of the professor in that table again. We can simply use the ID.

Therefore, in the third normal form, the following conditions are required:

 The table should be in the second normal form.

 There should not be any functional dependency.

9.7 Boyce-Codd Normal Form (BCNF)

Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was

found to be stricter than 3NF. That is, every relation in BCNF is also in 3NF; however, a

relation in 3NF is not necessarily in BCNF.

Definition. A relation schema R is in BCNF if whenever a nontrivial functional

dependency X→A holds in R, then X is a superkey of R. The formal definition of BCNF

differs from the definition of 3NF in that condition (b) of 3NF, which allows A to be prime,

is absent from BCNF. That makes BCNF a stronger normal form compared to 3NF. In

171

practice, most relation schemas that are in 3NF are also in BCNF. Only if X→A holds in a

relation schema R with X not being a superkey and A being a prime attribute will R be in

3NF but not in BCNF. Consider an example which shows a relation TEACH with the

following dependencies:

FD1: {Student, Course} → Teacher

FD2: Teacher→ Course

Student Course Teacher

 Neeraj DBMS H K Lal

Saroj Operating System P K Sharma

Saroj DBMS Radhe Shyam

Saroj Autometa M K Gupta

Shikha DBMS H K Lal

Shikha Operating System RajNath

The relation is in 3NF but not in BCNF

Boyce-Codd Normal form is a stronger generalization of third normal form. A table is in

Boyce-Codd Normal form if and only if at least one of the following conditions are met for

each functional dependency A → B:

 A is a superkey

 It is a trivial functional dependency.

Let us first understand what a superkey means. To understand BCNF in DBMS, consider

the following BCNF example table:

Course

code

Course venue Instructor Name Instructor’s phone

number

A B C

FD1

FD2

172

CS101 Lecture Hall 20 Prof. George +91 6514821924

CS152 Lecture Hall 21 Prof. Atkins +91 6519272918

CS154 CS Auditorium Prof. George +91 6514821924

Here, the first column (course code) is unique across various rows. So, it is a superkey.

Consider the combination of columns (course code, professor name). It is also unique

across various rows. So, it is also a superkey. A superkey is basically a set of columns such

that the value of that set of columns is unique across various rows. That is, no 2 rows have

the same set of values for those columns. Some of the superkeys for the table above are:

 Course code

 Course code, professor name

 Course code, professor mobile number

A superkey whose size (number of columns) is the smallest is called as a candidate key.

For instance, the first superkey above has just 1 column. The second one and the last one

have 2 columns. So, the first superkey (Course code) is a candidate key.

Boyce-Codd Normal Form says that if there is a functional dependency A → B, then either

A is a superkey or it is a trivial functional dependency. A trivial functional dependency

means that all columns of B are contained in the columns of A. For instance, (course code,

professor name) → (course code) is a trivial functional dependency because when we know

the value of course code and professor name, we do know the value of course code and so,

the dependency becomes trivial.

173

Let us understand what’s going on:

A is a superkey: this means that only and only on a superkey column should it be the case

that there is a dependency of other columns. Basically, if a set of columns (B) can be

determined knowing some other set of columns (A), then A should be a superkey. Superkey

basically determines each row uniquely.

It is a trivial functional dependency: this means that there should be no non-trivial

dependency. For instance, we saw how the professor’s department was dependent on the

professor’s name. This may create integrity issues since someone may edit the professor’s

name without changing the department. This may lead to an inconsistent database. There

are also 2 other normal forms:

9.8 CHECK YOUR PROGRESS

1. If F is a set of functional dependencies, then the closure of F is denoted by?

a) F*

b) Fo

c) F+

d) F

2. In the_________ normal form, a composite attribute is converted to individual

attributes.

A. First

B. Second

C. Third

D. Fourth

3. Table in 2NF eliminated _______________.

174

4. Functional dependencies are the types of constraints that are based on________.

5. ____________ is the bottom up approach to database design that design by

examining the relationship between attributes.

9.9 SUMMARY

Normalization of data can be considered a process of analyzing the given relation schemas

based on their FDs and primary keys to achieve the desirable properties of (1) minimizing

redundancy and (2) minimizing the insertion, deletion, and update anomalies. It can be

considered as a “filtering” or “purification” process to make the design have successively

better quality. Unsatisfactory relation schemas that do not meet certain conditions—the

normal form tests—are decomposed into smaller relation schemas that meet the tests and

hence possess the

desirable properties. Thus, the normalization procedure provides database designers with

the following:

■ A formal framework for analyzing relation schemas based on their keys and on the

functional dependencies among their attributes.

■ A series of normal form tests that can be carried out on individual relation schemas so

that the relational database can be normalized to any desired degree.

Database Normalization is a technique of organizing the data in the database.

Normalization is a systematic approach of decomposing tables to eliminate data

redundancy(repetition) and undesirable characteristics like Insertion, Update and Deletion

Anomalies. It is a multi-step process that puts data into tabular form, removing duplicated

data from the relation tables. Normalization is used for mainly two purposes,

 Eliminating redundant(useless) data.

 Ensuring data dependencies make sense i.e data is logically stored.

175

9.10 KEYWORDS

 SUPERKEY: A superkey is a set of attributes within a table whose values can be

used to uniquely identify a tuple. A candidate key is a minimal set of attributes

necessary to identify a tuple; this is also called a minimal superkey.

 ANOMALY: Anomalies are problems that can occur in poorly planned, un-

normalised databases where all the data is stored in one table (a flat-file database).

 CANDIDATE KEY: Primary Key is a unique and non-null key which identify a

record uniquely in table. A table can have only one primary key. Candidate key is

also a unique key to identify a record uniquely in a table but a table can have

multiple candidate keys

 4NF: Fourth normal form (4NF): Fourth normal form (4NF) is a level of database

normalization where there are no non-trivial multivalued dependencies other than a

candidate key. It builds on the first three normal forms (1NF, 2NF and 3NF) and

the Boyce-Codd Normal Form (BCNF).

 5NF: Fifth normal form (5NF), also known as project-join normal form (PJ/NF), is

a level of database normalization designed to reduce redundancy in relational

databases recording multi-valued facts by isolating semantically related multiple

relationships.

9.11 SELF-ASSESSMENT TEST

1. Explain why normalization is needed?

2. What are anomalies in a database? How we handle them?

3. Discuss 3NF in detail.

4. Which forms has a relation that possesses data about an individual entity? Explain

176

5. Which forms are based on the concept of functional dependency?

9.12 ANSWERS TO CHECK YOUR PROGRESS

1. C

2. A

3. All hidden dependencies

4. Key

5. Normalization

9.13 REFERENCES / SUGGESTED READINGS

 C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N.

Delhi.

 Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB

Publication 3rd edition.

 Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson

Education.

 https://www.tutorialspoint.com/dbms/database_normalization.htm

 https://www.guru99.com/database-normalization.html

 https://www.studytonight.com/dbms/database-normalization.php

 https://www.javatpoint.com/dbms-normalization

https://www.tutorialspoint.com/dbms/database_normalization.htm
https://www.guru99.com/database-normalization.html
https://www.studytonight.com/dbms/database-normalization.php
https://www.javatpoint.com/dbms-normalization

177

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: MCA-11 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 10 VETTER:

CONCURRENCY CONTROL TECHNIQUES

STRUCTURE

10.0 Learning Objective

10.1 Introduction

10.2 Definition

10.3 Overview of Database Transactions

10.4 Transaction States

10.5 ACID Properties of a Transaction

10.6 Transaction Recovery

10.7 Check Your Progress

10.8 Summary

10.9 Keywords

10.10 Self-Assessment Test

10.11 Answers to check your progress

10.12 References / Suggested Readings

178

10.0 LEARNING OBJECTIVE

 The objective of this chapter is to make the reader understand the meaning, and

concept of Concurrency Control Techniques. To know the transaction states and

properties of all the transactions states as well as the recovery methods in

transactions.

10.1 INTRODUCTION

Concurrency Control deals with interleaved execution of more than one transaction. In the

next article, we will see what serializability is and how to find whether a schedule is

serializable or not. Concurrent access is quite easy if all users are just reading data. There

is no way they can interfere with one another. Though for any practical Database, it would

have a mix of READ and WRITE operations and hence the concurrency is a challenge.

DBMS Concurrency Control is used to address such conflicts, which mostly occur with a

multi-user system. Therefore, Concurrency Control is the most important element for

proper functioning of a Database Management System where two or more database

transactions are executed simultaneously, which require access to the same data.

Reasons for using Concurrency control method is DBMS:

 To apply Isolation through mutual exclusion between conflicting transactions

 To resolve read-write and write-write conflict issues

 To preserve database consistency through constantly preserving execution

obstructions

 The system needs to control the interaction among the concurrent transactions.

This control is achieved using concurrent-control schemes.

 Concurrency control helps to ensure serializability

179

For Example, Assume that two people who go to electronic kiosks at the same time to buy

a movie ticket for the same movie and the same show time.

However, there is only one seat left in for the movie show in that particular theatre. Without

concurrency control in DBMS, it is possible that both moviegoers will end up purchasing

a ticket. However, concurrency control method does not allow this to happen. Both

moviegoers can still access information written in the movie seating database. But

concurrency control only provides a ticket to the buyer who has completed the transaction

process first.

10.2 DEFINITION

Concurrency Control- Concurrency Control in Database Management System is a

procedure of managing simultaneous operations without conflicting with each other. It

ensures that Database transactions are performed concurrently and accurately to produce

correct results without violating data integrity of the respective Database.

Transaction- A set of logically related operations is known as transaction.

10.3 OVERVIEW OF DATABASE TRANSACTIONS

Transaction is a logical unit of work that represents real-world events of any organisation

or an enterprise whereas concurrency control is the management of concurrent transaction

execution. Transaction processing systems execute database transactions with large

databases and hundreds of concurrent users, for example, railway and air reservations

systems, banking system, credit card processing, stock market monitoring, super market

inventory and checkouts and so on.

A transaction is a logical unit of work of database processing that includes one or more

database access operations.

180

A transaction can be defined as an action or series of actions that is carried out by a single

user or application program to perform operations for accessing the contents of the

database. The operations can include retrieval, (Read), insertion (Write), deletion and

modification. A transaction must be either completed or aborted.

It can either be embedded within an application program or can be specified interactively

via a high-level query language such as SQL. Its execution preserves the consistency of

the database. Each transaction should access shared data without interfering with the other

transactions and whenever a transaction successfully completes its execution; its effect

should be permanent. This basic abstraction frees the database application programmer

from the following concerns:

 Inconsistencies caused by conflicting updates from concurrent users.

 Partially completed transactions in the event of systems failure.

 User-directed undoing of transactions.

10.4 TRANSACTION STATES

A transaction is a sequence of READ and WRITE actions that are grouped together to from

a database access. A transaction may consist of a simple SELECT operation to generate a

list of table contents, or it may consist of a series of related UPDATE command sequences.

A transaction can include the following basic database access operations:

 Operations Descriptions

Retrive To retrive data stored ina database.

Insert To store new data in database.

181

Delete To delete existing data from database.

Update To modify existing data in database.

Commit To save the work done permanently.

Rollback To undo the work done.

Transaction that changes the contents of the database must alter the database from

one consistent state to another. A consistent database state is one in which all data integrity

constraints are satisfied. To ensure database consistency, every transaction must begin with

the database in a known consistent state.

Transaction Execution and Problems:

A transaction which successfully completes its execution is said to have been committed.

Otherwise, the transaction is aborted. Thus, if a committed transaction performs any update

operation on the database, its effect must be reflected on the database even if there is a

failure.

10.4 TRANSACTION STATES

States through which a transaction goes during its lifetime. These are the states which tell

about the current state of the Transaction and also tell how we will further do processing

we will do on the transactions. These states govern the rules which decide the fate of the

transaction whether it will commit or abort figure 10.1.

A transaction can be in one of the following states:

182

State Description

Active state A transaction goes into an active state immediately after it starts execution,

where it can issue READ and WRITE operations.

A transaction may be aborted when the transaction itself detects an error during

execution which it cannot recover from, for example, a transaction trying to debit

loan amount of an employee from his insufficient gross salary. A transaction

may also be aborted before it has been committed due to system failure or any

other circumstances beyond its control.

Partially

committed

When the transaction ends, it moves to the partially committed state.When the

last state is reached.

To this point, some recovery protocols need to ensure that a system failure will

not result in an inability to record the changes of the transaction permanently.

Once this check is successful, the transaction is said to have reached its commit

point and enters the committed state.

Aborted When the normal execution can no longer be performed.

Failed or aborted transactions may be restarted later, either automatically or after

being resubmitted by the user as new transactions.

Committed After successful completion of transaction.

A transaction is said to be in a committed state if it has partially committed and it

can be ensured that it will never be aborted.

183

Figure 10.1: Transaction States

10.5 ACID PROPERTIES OF A TRANSACTION

A transaction is a single logical unit of work which accesses and possibly modifies the

contents of a database. Transactions access data using read and write operations. In order

to maintain consistency in a database, before and after the transaction, certain properties

are followed. These are called ACID properties.

 Atomicity-

By this, we mean that either the entire transaction takes place at once or doesn’t

happen at all. There is no midway i.e. transactions do not occur partially. Each

transaction is considered as one unit and either runs to completion or is not executed

at all. It involves the following two operations.

o Abort: If a transaction aborts, changes made to database are not visible.

o Commit: If a transaction commits, changes made are visible.

 Consistency-

This means that integrity constraints must be maintained so that the database is

consistent before and after the transaction. It refers to the correctness of a database.

184

Referring to the example above, the total amount before and after the transaction

must be maintained.

 Isolation-

This property ensures that multiple transactions can occur concurrently without

leading to the inconsistency of database state. Transactions occur independently

without interference. Changes occurring in a particular transaction will not be

visible to any other transaction until that particular change in that transaction is

written to memory or has been committed. This property ensures that the execution

of transactions concurrently will result in a state that is equivalent to a state achieved

these were executed serially in some order.

 Durability-

This property ensures that once the transaction has completed execution, the

updates and modifications to the database are stored in and written to disk and they

persist even if a system failure occurs. These updates now become permanent and

are stored in non-volatile memory. The effects of the transaction, thus, are never

lost.

The ACID properties, in totality, provide a mechanism to ensure correctness and

consistency of a database in a way such that each transaction is a group of operations that

acts a single unit, produces consistent results, acts in isolation from other operations and

updates that it makes are durably stored.

One of the easiest ways to describe a database transaction is that it is any change in a

database, any “transaction” between the database components and the data fields that they

contain.

185

However, the terminology becomes confusing, because in enterprise as a whole, people are

so used to referring to financial transactions as simply “transactions.” That sets up a central

conflict in tech-speak versus the terminology of the average person.

A database “transaction” is any change that happens. To talk about handling financial

transactions in database environments, the word “financial” should be used explicitly.

Otherwise, confusion can easily crop up. Database systems will need specific features, such

as PCI compliance features, in order to handle financial transactions specifically.

As databases have evolved, transaction handling systems have also evolved. A new kind of

database called NoSQL is one that does not depend on the traditional relational database

data relationships to operate.

While many NoSQL systems offer ACID compliance, others utilize processes like snapshot

isolation or may sacrifice some consistency for other goals. Experts sometimes talk about

a trade-off between consistency and availability, or similar scenarios where consistently

may be treated differently by modern database environments. This type of question is

changing how stakeholders look at database systems, beyond the traditional relational

database paradigms.

10.6 TRANSACTION RECOVERY

Database systems, like any other computer system, are subject to failures but the data stored

in it must be available as and when required. When a database fails it must possess the

facilities for fast recovery. It must also have atomicity i.e. either transactions are completed

successfully and committed (the effect is recorded permanently in the database) or the

transaction should have no effect on the database.

186

There are both automatic and non-automatic ways for both, backing up of data and recovery

from any failure situations. The techniques used to recover the lost data due to system crash,

transaction errors, viruses, catastrophic failure, incorrect commands execution etc. are

database recovery techniques. So to prevent data loss recovery techniques based on deferred

update and immediate update or backing up data can be used.

Recovery techniques are heavily dependent upon the existence of a special file known as

a system log. It contains information about the start and end of each transaction and any

updates which occur in the transaction. The log keeps track of all transaction operations that

affect the values of database items. This information is needed to recover from transaction

failure.

 The log is kept on disk start_transaction(T): This log entry records that transaction T

starts the execution.

 read_item(T, X): This log entry records that transaction T reads the value of database

item X.

 write_item(T, X, old_value, new_value): This log entry records that transaction T

changes the value of the database item X from old_value to new_value. The old value

is sometimes known as a before an image of X, and the new value is known as an

afterimage of X.

 commit(T): This log entry records that transaction T has completed all accesses to the

database successfully and its effect can be committed (recorded permanently) to the

database.

 abort(T): This records that transaction T has been aborted.

 checkpoint: Checkpoint is a mechanism where all the previous logs are removed from

the system and stored permanently in a storage disk. Checkpoint declares a point

187

before which the DBMS was in consistent state, and all the transactions were

committed.

A transaction T reaches its commit point when all its operations that access the database have

been executed successfully i.e. the transaction has reached the point at which it will

not abort (terminate without completing). Once committed, the transaction is permanently

recorded in the database. Commitment always involves writing a commit entry to the log and

writing the log to disk. At the time of a system crash, item is searched back in the log for all

transactions T that have written a start_transaction(T) entry into the log but have not written

a commit(T) entry yet; these transactions may have to be rolled back to undo their effect on

the database during the recovery process

 Undoing – If a transaction crashes, then the recovery manager may undo transactions

i.e. reverse the operations of a transaction. This involves examining a transaction for

the log entry write_item(T, x, old_value, new_value) and setting the value of item x

in the database to old-value.There are two major techniques for recovery from non-

catastrophic transaction failures: deferred updates and immediate updates.

 Deferred update – This technique does not physically update the database on disk

until a transaction has reached its commit point. Before reaching commit, all

transaction updates are recorded in the local transaction workspace. If a transaction

fails before reaching its commit point, it will not have changed the database in any

way so UNDO is not needed. It may be necessary to REDO the effect of the operations

that are recorded in the local transaction workspace, because their effect may not yet

have been written in the database. Hence, a deferred update is also known as the No-

undo/redo algorithm

 Immediate update – In the immediate update, the database may be updated by some

operations of a transaction before the transaction reaches its commit point. However,

188

these operations are recorded in a log on disk before they are applied to the database,

making recovery still possible. If a transaction fails to reach its commit point, the

effect of its operation must be undone i.e. the transaction must be rolled back hence

we require both undo and redo. This technique is known as undo/redo algorithm.

 Caching/Buffering – In this one or more disk pages that include data items to be

updated are cached into main memory buffers and then updated in memory before

being written back to disk. A collection of in-memory buffers called the DBMS cache

is kept under control of DBMS for holding these buffers. A directory is used to keep

track of which database items are in the buffer. A dirty bit is associated with each

buffer, which is 0 if the buffer is not modified else 1 if modified.

 Shadow paging – It provides atomicity and durability. A directory with n entries is

constructed, where the ith entry points to the ith database page on the link. When a

transaction began executing the current directory is copied into a shadow directory.

When a page is to be modified, a shadow page is allocated in which changes are made

and when it is ready to become durable, all pages that refer to original are updated to

refer new replacement page.

10.7 CHECK YOUR PROGRESS

1. A _________ consists of a sequence of query and update statements.

2. Which of the following makes the transaction permanent in the database?

A. View

B. Commit

C. Rollback

D. Flashback

3. In case of any shut down during transaction before commit ______ is done

automatically.

4. In order to maintain the consistency during transactions database

provides_______>

189

5. A transaction completes its execution is said to be _________.

10.8 SUMMARY

Concurrency control is a database management systems (DBMS) concept that is used to

address occur with a multi-user system. Concurrency control, when applied to a DBMS, is

meant to coordinate simultaneous transactions while preserving data integrity. The

Concurrency is about to control the multi-user access of Database. When more than one

transactions are running simultaneously there are chances of a conflict to occur which can

leave database to an inconsistent state. To handle these conflicts we need concurrency

control in DBMS, which allows transactions to run simultaneously but handles them in

such a way so that the integrity of data remains intact.

Different concurrency control protocols offer different benefits between the amount of

concurrency they allow and the amount of overhead that they impose. Following are the

Concurrency Control techniques in DBMS:

 Lock-Based Protocols

 Two Phase Locking Protocol

 Timestamp-Based Protocols

 Validation-Based Protocols

10.9 KEYWORDS

 Failed state- If a transaction is executing and a failure occurs, either a hardware

failure or a software failure then the transaction goes into failed state from the active

state.

 Transaction- Transaction is a set of statements which performs tasks like

accessing the data or probably update it, within the DBMS.

190

 Abort: If a transaction aborts, changes made to database are not visible.

 Commit: If a transaction commits, changes made are visible.

 Starvation- Starvation or Livelock is the situation when a transaction has to wait

for a indefinite period of time to acquire a lock.

10.10 SELF-ASSESSMENT TEST

1. Explain the concurrency control techniques in DBMS?

2. Explain the term Transaction in DBMS.

3. What are the different transaction states?

4. Discuss the ACID Properties in detail.

5. What are the feasible threats to a Database? Discuss the importance and need of

recovery during transactions.

10.11 ANSWERS TO CHECK YOUR PROGRESS

1. Transaction

2. C

3. Rollback

4. Atomic

5. Commited

10.12 REFERENCES / SUGGESTED READINGS

 C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N.

Delhi.

 Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB

Publication 3rd edition.

 Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson

Education.

 Thomas Connolly Carolyn Begg, “Database System”, 3/2, Pearson Education.

 https://tutorialink.com/dbms/introduction-to-transaction-concepts.dbms

https://tutorialink.com/dbms/introduction-to-transaction-concepts.dbms

191

 https://www.techopedia.com/definition/16455/transaction-databases

 https://www.geeksforgeeks.org/transaction-states-in-dbms/

 https://www.javatpoint.com/dbms-states-of-transaction

 https://beginnersbook.com/2018/12/dbms-transaction-states/

https://www.techopedia.com/definition/16455/transaction-databases
https://www.geeksforgeeks.org/transaction-states-in-dbms/
https://www.javatpoint.com/dbms-states-of-transaction
https://beginnersbook.com/2018/12/dbms-transaction-states/

192

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: MCA-11 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 11 VETTER:

LOCKING AND RECOVERY TECHNIQUES IN

CENTRALIZED DBMS

STRUCTURE

11.0 Learning Objective

11.1 Introduction

11.2 Definition

11.3 Locking Methods of Concurrency Control

11.4 Timestamp Ordering

11.5 Multi version Techniques

11.6 Deadlock

11.7 Recovery Techniques

11.8 Check Your Progress

11.9 Summary

11.10 Keywords

11.11 Self-Assessment Test

11.12 Answers to check your progress

11.13 References / Suggested Readings

193

11.0 LEARNING OBJECTIVE

 The objective of this chapter is to make the reader understand the Locking

methods of concurrency control, to know the importance of timestamp ordering.

Discuss the deadlock in the systems and how to recover from it.

11.1 INTRODUCTION

Transaction processing systems usually allow multiple transactions to run concurrently. By

allowing multiple transactions to run concurrently will improve the performance of the

system in terms of increased throughout or improved response time, but this allows causes

several complications with consistency of the data. Ensuring consistency in spite of

concurrent execution of transaction require extra work, which is performed by the

concurrency controller system of DBMS.

What is Lock?

A lock is a variable associated with a data item that describes the status of the item

with respect to possible operations that can be applied to it. Generally, there is one lock

for each data item in the database. Locks are used as a means of synchronizing the access

by concurrent transactions to the database item.

Types of Locks

Several types of locks are used in concurrency control. To introduce locking concepts

gradually, we first discuss binary locks, which are simple but restrictive and so are not

used in practice. We then discuss shared/exclusive locks, which provide more general

locking capabilities and are used in practical database locking schemes.

194

 Binary Locks

A binary lock can have two states or values: locked and unlocked. A distinct lock is

associated with each database item A. If the value of the lock on A is 1, item A cannot be

accessed by a database operation that requests the item. If the value of the lock on A is 0

then item can be accessed when requested. We refer to the current value of the lock

associated with item A as LOCK (A). There are two operations, lock item and unlock item

are used with binary locking A transaction requests access to an item A by first issuing a

lock item (A) operation. If LOCK (A) = 1, the transaction is forced to wait. If LOCK (A)

= 0 it is set to 1 (the transaction locks the item) and the transaction is allowed to access

item A. When the transaction is through using the item, it issues an unlock item

(A) operation, which sets LOCK (A) to 0 (unlocks the item) so that A may be accessed by

other transactions. Hence binary lock enforces mutual exclusiol1 on the data item.

Rules of Binary Locks

If the simple binary locking scheme described here is used, every transaction must obey

the following rules:

1. A transaction must issue the operation lock_item (A) before any read_item (A)

or write, item operations are performed in T.

2. A transaction T must issue the operation unlock_item (A) after all read_item (A)

and write_item (A) operations are completed in T.

3. A transaction T will not issue a lock _item (A) operation if it already holds

the lock on Item A.

4. A transaction T will not issue an unlock _item (A) operation unless it already

holds the lock on item A.

195

5. The lock manager module of the DBMS can enforce these rules. Between the

Lock_item (A) and unlock_item (A) operations in transaction T, is said to hold the

lock on item A. At most one transaction can hold the lock on a particular item. Thus

no two transactions can access the’ same item concurrently.

Disadvantages of Binary Locks

As discussed earlier, binary locking scheme is too restrictive for database items, because

at most one transaction can hold a lock on a given item. So, binary locking system cannot

be used for practical purpose.

Share/Exclusive (for Read/Write) Locks

We should allow several transactions to access the same item A if they all access A’ for

reading purposes only. However, if a transaction is to write an item A, it must have

exclusive access to A. For this purpose, a different type of lock called a multiple-mode

lock is used. In this scheme there are shared/exclusive or read/write locks are used.

Locking operations

There are three locking operations called read_lock(A), write_lock(A) and unlock(A)

represented as lock-S(A), lock-X(A), unlock(A) (Here, S indicates shared lock, X

indicates exclusive lock)can be performed on a data item. A lock associated with an item

A, LOCK (A), now has three possible states: “read-locked”, “write-locked,” or

“unlocked.” A read-locked item is also called share-locked item because other transactions

are allowed to read the item, whereas a write-locked item is caused exclusive-locked,

because a single transaction exclusively holds the lock on the item.

196

Compatibility of Locks

Suppose that there are A and B two different locking modes. If a transaction T1 requests

a lock of mode on item Q on which transaction T2 currently hold a lock of mode B. If

transaction can be granted lock, in spite of the presence of the mode B lock, then we say

mode A is compatible with mode B. Such a function is shown in one matrix as shown

below:

The graphs shows that if two transactions only read the same data object they do not

conf1ict, but if one transaction writes a data object and another either read or write the

same data object, then they conflict with each other. A transaction requests a shared lock

on data item Q by executing the lock-S(Q) instruction. Similarly, an exclusive lock is

requested through the lock- X(Q) instruction. A data item Q can be unlocked via the

unlock(Q) instruction.

To access a data item, transaction T1 must first lock that item. If the data item is already

locked by another transaction in an incompatible mode, the concurrency control manager

will not grant the lock until all incompatible locks held by other transactions have been

released. Thus, T1 is made to wait until all incompatible locks held by other transactions

have been released.

197

11.2 DEFINITION

Concurrency Control- Concurrency control is provided in a database to:

1. Enforce isolation among transactions.

2. Preserve database consistency through consistency preserving execution of

transactions.

3. Resolve read-write and write-read conflicts.

Various concurrency control techniques are:

1. Two-phase locking Protocol

2. Time stamp ordering Protocol

3. Multi version concurrency control

4. Validation concurrency control

11.3 LOCKING METHODS OF CONCURRENECY

CONTROL

Locking is an operation which secures: permission to read, OR permission to write a data

item. Two phase locking is a process used to gain ownership of shared resources without

creating the possibility of deadlock.

The 3 activities taking place in the two phase update algorithm are:

1. Lock Acquisition

2. Modification of Data

3. Release Lock

Two phase locking prevents deadlock from occurring in distributed systems by releasing

all the resources it has acquired, if it is not possible to acquire all the resources required

without waiting for another process to finish using a lock. This means that no process is

ever in a state where it is holding some shared resources, and waiting for another process

198

to release a shared resource which it requires. This means that deadlock cannot occur due

to resource contention.

A transaction in the Two Phase Locking Protocol can assume one of the 2 phases:

(i) Growing Phase:

In this phase a transaction can only acquire locks but cannot release any lock. The point

when a transaction acquires all the locks it needs is called the Lock Point.

(ii) Shrinking Phase:

In this phase a transaction can only release locks but cannot acquire any.

Basically locking in DBMS can be defined as:

"A lock is a variable, associated with the data item, which controls the access of that data

item."

Locking is the most widely used form of the concurrency control. Locks are further divided

into three fields:

1. Lock Granularity

2. Lock Types

3. Deadlocks

1. Lock Granularity:

A database is basically represented as a collection of named data items. The size of the

data item chosen as the unit of protection by a concurrency control program is called

GRANULARITY. Locking can take place at the following level:

 Database level.

 Table level.

 Page level.

 Row (Tuple) level.

 Attributes (fields) level.

i) Database level Locking :

199

At database level locking, the entire database is locked. Thus, it prevents the use of any

tables in the database by transaction T2 while transaction T1 is being executed. Database

level of locking is suitable for batch processes. Being very slow, it is unsuitable for on-line

multi-user DBMSs.

ii) Table level Locking :

At table level locking, the entire table is locked. Thus, it prevents the access to any row

(tuple) by transaction T2 while transaction T1 is using the table. if a transaction requires

access to several tables, each table may be locked. However, two transactions can access

the same database as long as they access different tables. Table level locking is less

restrictive than database level. Table level locks are not suitable for multi-user DBMS

iii) Page level Locking :

At page level locking, the entire disk-page (or disk-block) is locked. A page has a fixed

size such as 4 K, 8 K, 16 K, 32 K and so on. A table can span several pages, and a page

can contain several rows (tuples) of one or more tables. Page level of locking is most

suitable for multi-user DBMSs.

iv) Row (Tuple) level Locking :

At row level locking, particular row (or tuple) is locked. A lock exists for each row in

each table of the database. The DBMS allows concurrent transactions to access different

rows of the same table, even if the rows are located on the same page. The row level lock

is much less restrictive than database level, table level, or page level locks. The row level

locking improves the availability of data. However, the management of row level locking

requires high overhead cost.

v) Attributes (fields) level Locking :

At attribute level locking, particular attribute (or field) is locked. Attribute level locking

allows concurrent transactions to access the same row, as long as they require the use of

different attributes within the row. The attribute level lock yields the most flexible multi-

user data access. It requires a high level of computer overhead.

2. Lock Types :

The DBMS mainly uses following types of locking techniques.

200

 Binary Locking

 Shared / Exclusive Locking

 Two - Phase Locking (2PL)

a. Binary Locking:

A binary lock can have two states or values: locked and unlocked (or 1 and 0, for

simplicity). A distinct lock is associated with each database item X.

 If the value of the lock on X is 1, item X cannot be accessed by a database operation that

requests the item. If the value of the lock on X is 0, the item can be accessed when

requested. We refer to the current value (or state) of the lock associated with item X as

LOCK(X).

Two operations, lock_item and unlock_item, are used with binary locking.

Lock_item(X):

A transaction requests access to an item X by first issuing a lock_item(X) operation. If

LOCK(X) = 1, the transaction is forced to wait. If LOCK(X) = 0, it is set to 1 (the

transaction locks the item) and the transaction is allowed to access item X.

Unlock_item (X):

When the transaction is through using the item, it issues an unlock_item(X) operation,

which sets LOCK(X) to 0 (unlocks the item) so that X may be accessed by other

transactions. Hence, a binary lock enforces mutual exclusion on the data item; i.e., at a

time only one transaction can hold a lock.

b. Shared / Exclusive Locking:

201

Shared lock:

These locks are reffered as read locks, and denoted by 'S'.

If a transaction T has obtained Shared-lock on data item X, then T can read X, but cannot

write X. Multiple Shared lock can be placed simultaneously on a data item.

Exclusive lock:

These Locks are referred as Write locks, and denoted by 'X'.

If a transaction T has obtained Exclusive lock on data item X, then T can be read as well

as write X. Only one Exclusive lock can be placed on a data item at a time. This means

multipls transactions does not modify the same data simultaneously.

 c. Two-Phase Locking (2PL):

Two-phase locking (also called 2PL) is a method or a protocol of controlling concurrent

processing in which all locking operations precede the first unlocking operation. Thus, a

transaction is said to follow the two-phase locking protocol if all locking operations (such

as read_Lock, write_Lock) precede the first unlock operation in the transaction. Two-

phase locking is the standard protocol used to maintain level 3 consistency 2PL defines

how transactions acquire and relinquish locks. The essential discipline is that after a

transaction has released a lock it may not obtain any further locks. 2PL has the following

two phases:

A growing phase, in which a transaction acquires all the required locks without unlocking

any data. Once all locks have been acquired, the transaction is in its locked

point.

A shrinking phase, in which a transaction releases all locks and cannot obtain any new

202

lock.

A transaction shows Two-Phase Locking technique.

Time Transaction Remarks

t0 Lock - X (A) acquire Exclusive lock on A.

t1 Read A read original value of A

t2 A = A - 100 subtract 100 from A

t3 Write A write new value of A

t4 Lock - X (B) acquire Exclusive lock on B.

t5 Read B read original value of B

t6 B = B + 100 add 100 to B

t7 Write B write new value of B

t8 Unlock (A) release lock on A

t9 Unock (B) release lock on B

11.4 TIMESTAMP ORDERING

Concurrency Control can be implemented in different ways. One way to implement it is by

using Locks. Now, lets discuss about Time Stamp Ordering Protocol.

As earlier introduced, Timestamp is a unique identifier created by the DBMS to identify a

transaction. They are usually assigned in the order in which they are submitted to the system.

https://www.geeksforgeeks.org/dbms-concurrency-control-protocols-lock-based-protocol/
https://www.geeksforgeeks.org/dbms-concurrency-control-protocols-lock-based-protocol/

203

Refer to the timestamp of a transaction T as TS(T). For basics of Timestamp you may

refer here.

Timestamp Ordering Protocol –

The main idea for this protocol is to order the transactions based on their Timestamps. A

schedule in which the transactions participate is then serializable and the only equivalent

serial schedule permitted has the transactions in the order of their Timestamp Values. Stating

simply, the schedule is equivalent to the particular Serial Order corresponding to the order

of the Transaction timestamps. Algorithm must ensure that, for each items accessed

by Conflicting Operations in the schedule, the order in which the item is accessed does not

violate the ordering. To ensure this, use two Timestamp Values relating to each database

item X.

 W_TS(X) is the largest timestamp of any transaction that

executed write(X) successfully.

 R_TS(X) is the largest timestamp of any transaction that

executed read(X) successfully.

Basic Timestamp Ordering –

Every transaction is issued a timestamp based on when it enters the system. Suppose, if an

old transaction Ti has timestamp TS(Ti), a new transaction Tj is assigned timestamp TS(Tj)

such that TS(Ti) < TS(Tj).The protocol manages concurrent execution such that the

timestamps determine the serializability order. The timestamp ordering protocol ensures that

any conflicting read and write operations are executed in timestamp order. Whenever some

Transaction T tries to issue a R_item(X) or a W_item(X), the Basic TO algorithm compares

the timestamp of T with R_TS(X) & W_TS(X) to ensure that the Timestamp order is not

violated. This describe the Basic TO protocol in following two cases.

https://www.geeksforgeeks.org/dbms-introduction-timestamp-deadlock-prevention-schemes/

204

1. Whenever a Transaction T issues a W_item(X) operation, check the following

conditions:

 If R_TS(X) > TS(T) or if W_TS(X) > TS(T), then abort and rollback T and

reject the operation. else,

 Execute W_item(X) operation of T and set W_TS(X) to TS(T).

2. Whenever a Transaction T issues a R_item(X) operation, check the following

conditions:

 If W_TS(X) > TS(T), then abort and reject T and reject the operation, else

 If W_TS(X) <= TS(T), then execute the R_item(X) operation of T and set

R_TS(X) to the larger of TS(T) and current R_TS(X).

Whenever the Basic TO algorithm detects twp conflicting operation that occur in incorrect

order, it rejects the later of the two operation by aborting the Transaction that issued it.

Schedules produced by Basic TO are guaranteed to be conflict serializable. Already

discussed that using Timestamp, can ensure that our schedule will be deadlock free.

One drawback of Basic TO protocol is that it Cascading Rollback is still possible. Suppose

we have a Transaction T1 and T2 has used a value written by T1. If T1 is aborted and

resubmitted to the system then, T must also be aborted and rolled back. So the problem of

Cascading aborts still prevails.

Let’s gist the Advantages and Disadvantages of Basic TO protocol:

 Timestamp Ordering protocol ensures serializablity since the precedence graph will

be of the form as shown in figure 11.1:

https://www.geeksforgeeks.org/dbms-introduction-timestamp-deadlock-prevention-schemes/

205

Figure 11.1: Precedence Graph for Timestamp Ordering

 Timestamp protocol ensures freedom from deadlock as no transaction ever waits.

 But the schedule may not be cascade free, and may not even be recoverable.

11.5 MULTI VERSION TECHNIQUES

MVCC provides concurrent access to the database without locking the data. This feature

improves the performance of database applications in a multiuser environment.

Applications will no longer hang because a read cannot acquire a lock.

MVCC provides each user connected to the database with a "snapshot" of the data to work

with. The data is consistent with a point in time. Other users of the database see no changes

until the transaction is committed. The snapshot can be taken at the start of a transaction,

or at the start of each statement, as determined by the isolation level setting.

 This release provides full MVCC support, in which readers do not block writers,

and writers do not block readers.

 The user invokes MVCC protocols for a session or table with the SQL statement:

 SET LOCKMODE session | ON table_name WHERE LEVEL = MVCC

 The alterdb command has two new options, -disable_mvcc and -enable_mvcc,

which disable and enable MVCC, respectively. By default, MVCC is enabled for

all existing and newly created databases.

206

 Using MVCC is optional. Your existing applications that do not use MVCC will

execute in the same manner they worked previously. The overhead of MVCC is the

cost of maintaining multiple versions of database pages.

 For the system administrator, MVCC may require additional buffer manager

memory because Consistent Read pages occupy cache space that otherwise might

be used by database pages.

 The MVCC feature changes the format of many log records, which means that after

running upgradedb, previous journals and checkpoints will be invalid.

For details about this feature, see the following:

•The chapters "Understanding the Locking System" and "Understanding

Multiversion Concurrency Control" in the Database Administrator Guide

•The SET LOCKMODE and SET SESSION ISOLATION LEVEL statements in

the SQL Reference Guide

•The alterdb command in the Command Reference Guide

11.6 DEADLOCKS

In a database, a deadlock is an unwanted situation in which two or more transactions are

waiting indefinitely for one another to give up locks. Deadlock is said to be one of the most

feared complications in DBMS as it brings the whole system to a Halt.

Example – let us understand the concept of Deadlock with an example:

Suppose, Transaction T1 holds a lock on some rows in the Students table and needs to

update some rows in the Grades table. Simultaneously, Transaction T2 holds locks on those

very rows (Which T1 needs to update) in the Grades table but needs to update the rows in

the Student table held by Transaction T1.

207

Now, the main problem arises. Transaction T1 will wait for transaction T2 to give up lock,

and similarly transaction T2 will wait for transaction T1 to give up lock. As a consequence,

All activity comes to a halt and remains at a standstill forever unless the DBMS detects the

deadlock and aborts one of the transactions as shown in figure 11.2.

Figure 11.2: Deadlock in DBMS

11.7 RECOVERY IN DBMS

Basically, whenever a transaction is submitted to a DBMS for execution, the operating

system is responsible for making sure or to be confirmed that all the operation which need to

be in performed in the transaction have completed successfully and their effect is either

recorded in the database or the transaction doesn’t affect the database or any other

transactions.

The DBMS must not permit some operation of the transaction T to be applied to the database

while other operations of T is not. This basically may happen if a transaction fails after

executing some of its operations but before executing all of them.

Types of failures –

208

There are basically following types of failures that may occur and leads to failure of the

transaction such as:

1. Transaction failure

2. System failure

3. Media failure and so on.

Let us try to understand the different types of failures that may occur during the transaction.

1. System crash –A hardware, software or network error occurs comes under this

category this types of failures basically occurs during the execution of the transaction.

Hardware failures are basically considered as Hardware failure.

2. System error – Some operation that is performed during the transaction is the reason

for this type of error to occur, such as integer or divide by zero. This type of failures

is also known as the transaction which may also occur because of erroneous parameter

values or because of a logical programming error. In addition to this user may also

interrupt the execution during execution which may lead to failure in the transaction.

3. Local error – This basically happens when we are doing the transaction but certain

conditions may occur that may lead to cancellation of the transaction. This type of

error is basically coming under Local error. The simple example of this is that data

for the transaction may not found. When we want to debit money from an insufficient

balance account which leads to the cancellation of our request or transaction. And this

exception should be programmed in the transaction itself so that it wouldn’t be

considered as a failure.

209

4. Concurrency control enforcement – The concurrency control method may decide

to abort the transaction, to start again because it basically violates serializability or

we can say that several processes are in a deadlock.

5. Disk failure – This type of failure basically occur when some disk loses their data

because of a read or write malfunction or because of a disk read/write head crash.

This may happen during a read /write operation of the transaction.

6. Castropher- –These are also known as physical problems it basically refers to the

endless list of problems that include power failure or air-conditioning failure, fire,

theft sabotage overwriting disk or tapes by mistake and mounting of the wrong tape

by the operator.

11.8 CHECK YOUR PROGRESS

1. Locks placed by command are called _________.

2. Which of the following locks the item from change but not from read?

a) implicit locks

b) explicit lock

c) exclusive locks

d) shared locks

3. The advantage of optimistic locking is that:

a) The lock is obtained only after the transaction has processed.

b) The lock is obtained before the transaction has processed.

c) The lock never needs to be obtained.

d) Transactions that are best suited are those with a lot of activity.

4. Which of the following refers to a cursor type that when the cursor is

opened, a primary key value is saved for each row in the recordset; when

the application accesses a row, the key is used to fetch the current values of

the row?

a) Forward only

b) Static

c) Keyset

210

d) Dynamic

11.9 SUMMARY

Locking mechanisms are a way for databases to produce sequential data output without the

sequential steps. The locks provide a method for securing the data that is being used so no

anomalies can occur like lost data or additional data that can be added because of the loss

of a transaction.

1. Two-Phase Locking Protocol:

Locking is an operation which secures: permission to read, OR permission to write a data

item. Two phase locking is a process used to gain ownership of shared resources without

creating the possibility of deadlock.

The 3 activities taking place in the two phase update algorithm are:

1. Lock Acquisition

2. Modification of Data

3. Release Lock

Two phase locking prevents deadlock from occurring in distributed systems by releasing all

the resources it has acquired, if it is not possible to acquire all the resources required

without waiting for another process to finish using a lock. This means that no process is

ever in a state where it is holding some shared resources, and waiting for another process to

release a shared resource which it requires. This means that deadlock cannot occur due to

resource contention.

A transaction in the Two Phase Locking Protocol can assume one of the 2 phases:

 (i) Growing Phase:

In this phase a transaction can only acquire locks but cannot release any lock. The point

when a transaction acquires all the locks it needs is called the Lock Point.

https://www.geeksforgeeks.org/two-phase-locking-protocol/

211

 (ii) Shrinking Phase:

In this phase a transaction can only release locks but cannot acquire any.

2. Time Stamp Ordering Protocol:

A timestamp is a tag that can be attached to any transaction or any data item, which denotes

a specific time on which the transaction or the data item had been used in any way. A

timestamp can be implemented in 2 ways. One is to directly assign the current value of the

clock to the transaction or data item. The other is to attach the value of a logical counter that

keeps increment as new timestamps are required.

The timestamp of a data item can be of 2 types:

 (i) W-timestamp(X):

This means the latest time when the data item X has been written into.

 (ii) R-timestamp(X):

This means the latest time when the data item X has been read from. These 2 timestamps

are updated each time a successful read/write operation is performed on the data item X.

3. Multiversion Concurrency Control:

Multiversion schemes keep old versions of data item to increase concurrency.

Multiversion 2 phase locking:

Each successful write results in the creation of a new version of the data item written.

Timestamps are used to label the versions. When a read(X) operation is issued, select an

appropriate version of X based on the timestamp of the transaction.

11.10 KEYWORDS

 Two- phase locking- The Two Phase Commit is designed to coordinate the

transactions of the requests to the system. The idea behind the protocol is to produce

serialized results from a non-serialized system.

 View- Any set of tuples; a data report from the RDBMS in response to a query.

https://www.geeksforgeeks.org/timestamp-based-concurrency-control/

212

 Live lock- A transaction is in a state of live lock if it cannot proceed for an indefinite

period while other transactions in the system continue normally.

11.11 SELF-ASSESSMENT TEST

1. What are different types of locking techniques in DBMS?

2. What is a deadlock? How deadlock occur in a database?

3. How to recover a database management system from a deadlock?

4. What is timestamp ordering?

5. What is multiversion2 phase locking?

11.12 ANSWERS TO CHECK YOUR PROGRESS

1. B

2. Shared locks

3. A

4. C

11.13 REFERENCES / SUGGESTED READINGS

 C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N.

Delhi.

 Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB

Publication 3rd edition.

 Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson

Education.

 Thomas Connolly Carolyn Begg, “Database System”, 3/2, Pearson Education.

 https://www.geeksforgeeks.org/concurrency-control-in-dbms/

 https://www.geeksforgeeks.org/deadlock-in-dbms/?ref=lbp

 https://www.javatpoint.com/dbms-recoverability-of-schedule

 https://www.slideshare.net/rajvardhan7/multiversion-concurrency-control-

techniques

https://www.geeksforgeeks.org/concurrency-control-in-dbms/
https://www.geeksforgeeks.org/deadlock-in-dbms/?ref=lbp
https://www.javatpoint.com/dbms-recoverability-of-schedule
https://www.slideshare.net/rajvardhan7/multiversion-concurrency-control-techniques
https://www.slideshare.net/rajvardhan7/multiversion-concurrency-control-techniques

213

SUBJECT: DATABASE MANAGEMENT SYSTEM

COURSE CODE: MCA-11 AUTHOR: DR. DEEPAK NANDAL

LESSON NO. 12 VETTER:

DDBMS DESIGN

STRUCTURE

12.0 Learning Objective

12.1 Introduction

12.2 Definition

12.3 Distributed Database

12.4 Data Replication

12.5 Fragmentation Techniques

12.6 Check Your Progress

12.7 Summary

12.8 Keywords

12.9 Self-Assessment Test

12.10 Answers to check your progress

12.11 References / Suggested Readings

214

12.0 LEARNING OBJECTIVE

 The objective of this chapter is to make the reader understand the distributed

database systems, to know the difference between dbms and ddbms. To know

the types of the distributed database systems.

12.1 INTRODUCTION

In today’s organizations, there is a need for a well-maintained database to maintain

its functionality. Earlier, databases used to be centralized in nature. But, with the boost in

globalization, organizations inclined to diversify throughout the globe. These days, instead

of opting for a central database, many organizations choose to distribute data over local

servers. This distribution of data over various servers is generally known as distributed

databases. A distributed database system is the collection of logically interrelated data,

distributed across various locations that communicate via a computer network.

To ensure a successful database management system, it is vital to carefully work

out a strategy to align the data requirements and business agenda of your organization.

Hiring the services of a database development company can be of great help in creating and

implementing database solutions. A professional company can help you in determining the

best database management system and test database programs. Many database

development companies these days provide custom database solutions provider inclined to

client’s needs to help efficient management and security of crucial business data.

Since its introduction, Distributed database systems have eliminated many

shortcomings of the centralized database systems and fit more in the decentralized

215

structures of many organizations. Here are some of the key benefits of a distributed

database system over the centralized database system, have a look:

 Reliability and Availability: Distributed database systems are more reliable as

compared to a centralized database system. In the case of database failures, the

whole system of centralized databases comes to an end. Whereas, in the case of

distributed database systems, if a component fails, the performance of the

system continues may be at a slower rate.

 Modular Development: In the case of centralized database systems, if the

system requires to be extended to new locations or new units, the action needs

substantial efforts and interruption in the existing functioning. But, in a

distributed database system, the expansion work simply requires adding new

computers and local data to the new site and finally connecting them to the

distributed system without disturbing the existing functionality.

 Quick Response: When data is distributed in an efficient manner, the user

requests or queries can be met from local data itself, thus offering a quick

response. In the case of centralized database systems, all kinds of queries need

to pass through the central computer for processing, which may lead to delay in

response.

 Lower Communication Overhead: When data is positioned locally where it

is frequently used, then the communication costs for data management can be

minimized. However, in the case of centralized database systems, the

communication costs are quite high.

 Secured Management of Distributed Data: A number of transparencies such

as fragmented transparency, network transparency, and replication transparency

are implemented to cover the actual implementation details of the entire

216

distributed system. Thus, distributed database systems provide more security of

data as compared to centralized database systems.

12.2 DEFINITION

Data Replication- Data replication is the storage of data copies at multiple sites on the

network.

Client- Server Architecture- Implementation of a distributed database system must be

carefully managed within a client server architecture. Typically, the server provides the

resources for the client to use. The client receives the request from the user and the request

is passed to the server. The server receives, schedules and executes the requests, selecting

only what the client requires. The request is sent only when the client requests it.

Data Fragmentation- Data fragmentation is a technique used to break up objects. In

designing a distributed database, you must decide which portion of the database is to be

stored where.

12.3 DISTRIBTUED DATABASE SYSTEM

A distributed database is basically a database that is not limited to one system, it is spread

over different sites, i.e. on multiple computers or over a network of computers. A distributed

database system is located on various sited that don’t share physical components. This may

be required when a particular database needs to be accessed by various users globally. It

needs to be managed such that for the users it looks like one single database.

Types:

1. Homogeneous Database:

217

In a homogeneous database, all different sites store database identically. The operating

system, database management system and the data structures used – all are same at all sites.

Hence, they’re easy to manage.

2. Heterogeneous Database:

In a heterogeneous distributed database, different sites can use different schema and

software that can lead to problems in query processing and transactions. Also, a particular

site might be completely unaware of the other sites. Different computers may use a different

operating system, different database application. They may even use different data models

for the database. Hence, translations are required for different sites to communicate.

12.4 DATA REPLICATION

Data replication is the process of storing separate copies of the database at two or more

sites. It is a popular fault tolerance technique of distributed databases. Data replication is

the storage of data copies at multiple sites on the network. Fragment copies can be stored

at several site, thus enhancing data availability and response time. Replicated data is

subject to a mutual consistency rule. This rule requires that all copies of the data fragments

must be identical and to ensure data consistency among all of the replications. Although

data replication is beneficial in terms of availability and response times, the maintenance

of the replications can become complex. For example, if data is replicated over multiple

sites, the DDBMS must decide which copy to access. For a query operation, the nearest

copy is all that is required to satisfy a transaction. However, if the operation is an update,

then all copies must be selected and updated to satisfy the mutual consistency rule.

218

Advantages of Data Replication

 Reliability − In case of failure of any site, the database system continues to work

since a copy is available at another site(s).

 Reduction in Network Load − Since local copies of data are available, query

processing can be done with reduced network usage, particularly during prime

hours. Data updating can be done at non-prime hours.

 Quicker Response − Availability of local copies of data ensures quick query

processing and consequently quick response time.

 Simpler Transactions − Transactions require less number of joins of tables

located at different sites and minimal coordination across the network. Thus, they

become simpler in nature.

Disadvantages of Data Replication

 Increased Storage Requirements − Maintaining multiple copies of data is

associated with increased storage costs. The storage space required is in multiples

of the storage required for a centralized system.

 Increased Cost and Complexity of Data Updating − Each time a data item is

updated, the update needs to be reflected in all the copies of the data at the different

sites. This requires complex synchronization techniques and protocols.

 Undesirable Application – Database coupling − If complex update mechanisms

are not used, removing data inconsistency requires complex co-ordination at

application level. This results in undesirable application – database coupling.

Some commonly used replication techniques are −

219

 Snapshot replication

 Near-real-time replication

 Pull replication

12.5 FRAGMENTATION TECHNIQUES

Data fragmentation is a technique used to break up objects. In designing a distributed

database, you must decide which portion of the database is to be stored where. One

technique used to break up the database into logical units called fragments. Fragmentation

information is stored in a distributed data catalogue which the processing computer uses to

process a user's request. As a point of discussion, we can look at data fragmentation in

terms of relations or tables. The following matrix describes the different types of

fragmentation that can be used.

Fragmentation is the task of dividing a table into a set of smaller tables. The subsets of the

table are called fragments. Fragmentation can be of three types: horizontal, vertical, and

hybrid (combination of horizontal and vertical). Horizontal fragmentation can further be

classified into two techniques: primary horizontal fragmentation and derived horizontal

fragmentation.

Fragmentation should be done in a way so that the original table can be reconstructed from

the fragments. This is needed so that the original table can be reconstructed from the

fragments whenever required. This requirement is called “re-constructiveness.”

Advantages of Fragmentation

 Since data is stored close to the site of usage, efficiency of the database system is

increased.

220

 Local query optimization techniques are sufficient for most queries since data is

locally available.

 Since irrelevant data is not available at the sites, security and privacy of the

database system can be maintained.

Disadvantages of Fragmentation

 When data from different fragments are required, the access speeds may be very

high.

 In case of recursive fragmentations, the job of reconstruction will need expensive

techniques.

 Lack of back-up copies of data in different sites may render the database ineffective

in case of failure of a site.

VERTICAL FRAGMENTATION

In vertical fragmentation, the fields or columns of a table are grouped into fragments. In

order to maintain re-constructiveness, each fragment should contain the primary key

field(s) of the table. Vertical fragmentation can be used to enforce privacy of data.

HORIZONTAL FRAGMENTATION

Horizontal fragmentation groups the tuples of a table in accordance to values of one or

more fields. Horizontal fragmentation should also confirm to the rule of re-

constructiveness. Each horizontal fragment must have all columns of the original base

table.

HYBRID FRAGMENTATION

221

In hybrid fragmentation, a combination of horizontal and vertical fragmentation techniques

are used. This is the most flexible fragmentation technique since it generates fragments

with minimal extraneous information. However, reconstruction of the original table is often

an expensive task.

12.6 CHECK YOUR PROGRESS

1. Global wait-for graph is used for ___________in distributed database.

2. Which of the following is not a promise of distributed database?

a. Network transparency

b. Replication Transparency

c. Fragmentation Transparency

d. None of the above

3. The real use of the two phase commit protocol is ___________

4. A distributed transaction can be __________if queries are issued at one or

more nodes.

5. Depending on the solution each node in the distributed database system can

act as_________

12.7 SUMMARY

Whether the database is centralized or distributed, the design principles and concepts are

same. However, the design of a distributed database introduces three new issues:

• How to partition the database into fragments.

• Which fragments to replicate.

• Where to locate those fragments and replicas.

Data fragmentation and data replication deal with the first two issues and data allocation

deals with the third issue.

222

Data Fragmentation:

Data fragmentation allows you to break a single object into two or more segments, or

fragments. The object might be a user’s database, a system database, or a table. Each

fragment can be stored at any site over a computer network. Information about data

fragmentation is stored in the distributed data catalog (DDC), from which it is accessed by

the TP to process user requests. Data fragmentation strategies, as discussed here, are

based at the table level and consist of dividing a table into logical fragments. You will

explore three types of data fragmentation strategies: horizontal, vertical, and mixed.

Horizontal fragmentation refers to the division of a relation into subsets (fragments) of

tuples (rows). Each fragment is stored at a different node, and each fragment has unique

rows. However, the unique rows all have the same attributes (columns). In short, each

fragment represents the equivalent of a SELECT statement, with the WHERE clause on a

single attribute.

Vertical fragmentation refers to the division of a relation into attribute (column) subsets.

Each subset (fragment) is stored at a different node, and each fragment has unique

columns—with the exception of the key column, which is common to all fragments. This

is the equivalent of the PROJECT statement in SQL.

Mixed fragmentation refers to a combination of horizontal and vertical strategies. In other

words, a table may be divided into several horizontal subsets (rows), each one having a

subset of the attributes (columns).

12.8 KEYWORDS

• MYSQL- Cluster is the distributed database combining linear scalability and high

availability. It provides in-memory real-time access with transactional consistency

223

across partitioned and distributed datasets. It is designed for mission critical

applications.

• DDBMS- A distributed database management system (DDBMS) is the software

system that manages a distributed database such that the distribution aspects are

transparent to the users.

• Distributed database- A distributed database (DDB) is an integrated collection of

databases that is physically distributed across sites in a computer network.

12.9 SELF-ASSESSMENT TEST

1. What is Distributed Database Management System?

2. What are the major differences between DBMS and DDBMS?

3. What is Fragmentation?

4. What is Data Replication?

5. Discuss some design issues in DDBMS.

12.10 ANSWERS TO CHECK YOUR PROGRESS

1. Handling deadlocks

2. D

3. Atomicity i.e. all or nothing commits at all sites

4. Partially read only

12.11 REFERENCES / SUGGESTED READINGS

 C.J Date, “An Introduction to Database Systems”, 8th edition, Addison Wesley N.

Delhi.

 Ivan Bayross, “SQL, PL/SQL-The Programming Language of ORACLE”, BPB

Publication 3rd edition.

 Elmasri and Navathe, “Fundamentals of Database Systems”, 5th edition, Pearson

Education.

 Thomas Connolly Carolyn Begg, “Database System”, 3/2, Pearson Education.

 https://www.tutorialspoint.com/distributed_dbms/distributed_dbms_design_strate

gies.htm

https://www.tutorialspoint.com/distributed_dbms/distributed_dbms_design_strategies.htm
https://www.tutorialspoint.com/distributed_dbms/distributed_dbms_design_strategies.htm

224

 https://www.dlsweb.rmit.edu.au/Toolbox/knowmang/content/distributed_sys/ddm

s_design.htm

 http://www.myreadingroom.co.in/notes-and-studymaterial/65-dbms/559-database-

design-concepts.html

 https://www.smartsight.in/technology/a-detailed-guide-about-data-allocation-in-

distributed-database-design/

 https://www.geeksforgeeks.org/distributed-database-system/

 https://www.geeksforgeeks.org/concurrency-control-in-dbms/

https://www.dlsweb.rmit.edu.au/Toolbox/knowmang/content/distributed_sys/ddms_design.htm
https://www.dlsweb.rmit.edu.au/Toolbox/knowmang/content/distributed_sys/ddms_design.htm
http://www.myreadingroom.co.in/notes-and-studymaterial/65-dbms/559-database-design-concepts.html
http://www.myreadingroom.co.in/notes-and-studymaterial/65-dbms/559-database-design-concepts.html
https://www.smartsight.in/technology/a-detailed-guide-about-data-allocation-in-distributed-database-design/
https://www.smartsight.in/technology/a-detailed-guide-about-data-allocation-in-distributed-database-design/
https://www.geeksforgeeks.org/distributed-database-system/
https://www.geeksforgeeks.org/concurrency-control-in-dbms/

